ORACLE

Oracle® XML Developer's Kit
Programmer's Guide

10g Release 2 (10.2)
Part No. B14252-01

June 2005

Oracle XML Developer's Kit Programmer's Guide, 10g Release 2 (10.2)

Part No. B14252-01

Copyright © 2001, 2005, Oracle. All rights reserved.

Primary Author: Lance Ashdown

Contributing Authors: Jack Melnick, Steve Muench, Mark Scardina, Jinyu Wang

Contributors: Sandeepan Banerjee, Sivasankaran Chandrasekar, Dan Chiba, Steve Ding, Stanley Guan, Bill
Han, K. Karun, Murali Krishnaprasad, Dmitry Lenkov, Roza Leyderman, Bruce Lowenthal, Ian Macky,
Anjana Manian, Meghna Mehta, Valarie Moore, Ravi Murthy, Anguel Novoselsky, Arkady Rabinov, Tomas
Saulys, Helen Slattery, Asha Tarachandani, Tim Yu, Jim Warner, Simon Wong, Kongyi Zhou

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUROIACE ... e e s XXXV
J AN Lo = V< T SST SRR XXXV
Documentation AccesSibilitycccociiiiiiiiiiiiiiiiii e XXXV
Related DOCUITIEIESooviiiviieeieceeeeeeeee ettt ettt et e e et e esaeeateeeseeenseesaseessesesessnseeseessesenseesseeanns XXXVi
(@03 4 T£=3 015 (o) o - I R U RRRURURRRRRRRRRRt XXXVii

WHhat's NeW iNThe XDIK? ...t xli
Features Introduced in Oracle XML Developer's Kit 10g Release 2 (10.2).......cccccevvvivvininininininnnnes xli
Features Introduced in Oracle XML Developer's Kit 10g Release 1 (10.1)........cccccevveererniireriiecncnes xli

1 Introduction to Oracle XML Developer's Kit

Overview of Oracle XML Developer's Kit (XDK)..........cccccccciuiiiiiiiiiiiiccececees 1-1
XDK COMPONENES ...ttt ettt er et a e e s e st se st sae st st saesesnesesaeneenenees 1-3
XML PATSETS ...ttt ettt ettt ettt ettt ettt et ettt s bt et sbe et e e bt et e eb e et e eb b et e ebt et e ebtenbesaeenbeeaeen 1-4
XSLT PIOCESSOIS ...eeeveeeerieiieeieeitesieeiteeseeesteesseesseessseesseesssaasasseessseesseassseesssessssssseesssessseesssesssensseenns 1-5
XML SCREMEA PTOCESSOTSvuvviuiiinieiiieieieiitetteteitetettetestetestetestesestese e se st sessesessesessesesesensesensenessenes 1-5
XML Class GENETALOTSceueruiieieteieieietetteteetesteetestesteste et et et ese e st ebestesbessestesensententeseeseeseebessessens 1-6
XML Pipeline PTOCESSOTc.cvciiiiiiiiiiiiiiiiiiiiciirc e 1-6
XDK JAVABEANS ...ttt ettt ettt ettt ettt sbe et bbb e aees 1-7
Oracle XML SQL Utility (XSU).....ccoiiiiiiiiiiiiiicicic s 1-7
Handling or Representing an XML Document...........ccccceuvuviriiiniiinininnnninnnccnnen. 1-8

Using XSU with an XML Class GeNerator ... 1-8

TransX UtHIEY....c.coiiiiiiic s 1-8
XSQL Pages Publishing Framework ..o 1-9
S0AP SEIVICES.....cviviiiiiicicictcic s 1-9
XSLT Virtual Machine (XVIM)co.ooioiiieeesieeteetet ettt sttt sttt ettt eb ettt sae s 1-10
XML Document Generation with the XDK Componentsccccocovvinnnnninnnniinnnn, 1-10
XML Document Generation With Java........cocceerererinieniiinenee e 1-10
XML Document Generation With Cccoiiiiriiieiieeee et 1-12
XML Document Generation With CH......coeciiiiiiiiiiiciiieeieeeceeeee et e 1-12
Development Tools and Frameworks for the XDKccccccooiiiiiiiiii 1-13
Oracle JDEVEIOPETccueiiiiiieiiiecte et 1-14
User Interface XIML (UDX) ...ccueirieiririniiirieinieieeteiesteieiei ettt sttt sttt ene 1-16
Oracle REPOTLSc.cueviviiiiiiiiicicicictc s 1-16
Oracle XML GateWaycccvuiiiiiiiiiiiiiiiiiii s 1-16

Oracle Data Provider fOr INET ...ttt ettt s e s snaees 1-16
Installing the XDK ..ot 1-17

Partl XDK for Java

2

Getting Started with Java XDK Components

Installing Java XDK COMPONENLSccocoiiiiiiiiiiiiiiiiiiicicc s 2-1
Java XDK Component Dependencies ..o 2-2
Setting Up the Java XDK Environment............c.cccoooiiiiiiiiiiiieeeeennes 2-5
Setting Java XDK Environment Variables for UNIX.........c.coooiiiie 2-5
Testing the Java XDK Environment on UNIXccccocooiiiiinininirrecneeeeeeercenne 2-5

Setting Java XDK Environment Variables for Windows............ccooeueiiiiiiiiiiccce, 2-6
Testing the Java XDK Environment on Windows.........ccccuoiiiiiiiininicccccce 2-7
Verifying the Java XDK Components Version..............ccococeiviviiiiiiiiiiiiniccecenes 2-8

Using the XML Parser for Java

Introduction to the XIML Parser for JAVa..........ccocieceriierienieieeeeieeceeee ettt see e sne s 3-1
Prere@qUISITES.......oioiieieiiieect s 3-1
Standards and Specifications.............ccciueiiieiiiic e 3-2
DOM, SAX, and JAXP in the XML ParSerccceceeieiririiriniisesiesiesieseesteeeseeseesessessessessessessesseses 3-2

DOM in the XML ParSercccoviiiiiiiiiiiiiiiiieiineeece s 3-3
SAX IN the XML PaISerccccoiiiiiiiiiiiiiiiiiiiiiicc s 3-4
JAXP N the XIML PaATSETccuieiiriiierieieieieteeeeteeeeessstessessessessessessessessessssessessessessessensessessessenes 3-4
Namespace Support in the XML Parser ... 3-5
Validation in the XML Parser ... 3-6
Compression in the XML Parser ..o 3-7

Using the XML Parser for Java: OVeIrVIeW..........cccccoviiiiiiiiiniiiniii s 3-8
Using the XML Parser for Java: Basic PTOCESSccceeviiieiiiiiiiiiicccc 3-8
Running the XML Parser Demo Programs..........c.cccceeeererrirerrerennnncrseessseseseseses s 3-9
Using the XML Parser Command-Line Utilityccccooiiiiiiiiiii, 3-11

Parsing XML with DOM ..o 3-11
Using the DOM APL......cciiiieeeeieee et aseeeees 3-12
Performing Basic DOM Parsing..........cccoceueuioirieiiiinieiiceieete s 3-15
Performing DOM Operations with Namespacesccccceuevieieieiicniiiiiiceeceeec e, 3-17
Performing DOM Operations with EVents...........ccccccccviiiiiiiiiiiiiceccccceeeeeeeees 3-18
Performing DOM Operations with Ranges...........ccccccovvviiiiiiiiniiiiiiccc 3-19
Performing DOM Operations with TreeWalker............cccccceeviviiiiiiinniiniiiinncnne 3-20

Parsing XML with SAX ... 3-22
Using the SAX APL....oo b 3-23
Performing Basic SAX Parsing ...t 3-25
Performing Basic SAX Parsing with Namespaces..........cccccccevuvuvurirrriniinennnncrerceeeeeeees 3-27
Performing SAX Parsing with XMLTOKENIZercccooviviiiiiiiiciicc e, 3-28

Parsing XML With JAXP........ccocooiiiiiiie e 3-29
UsSINg the JAXP AP ..ot 3-30

Using the SAX API Through JAXP.......coooiiiii s 3-30
Using the DOM API Through JAXP ... 3-30

Transforming XML Through JAXP ... 3-31

Parsing With JAXP ..o 3-31
Performing Basic Transformations with JAXPcccccooeiiiiiiiiiiccecceeeeeeeeees 3-33
Compressing XIML..........ooiiiiiiiii ettt 3-34
Compressing and Decompressing XML from DOMccccooiiiiiiiiiiiiccce, 3-34
Compressing @ DOM ODJect........cccueuiiiiiiiiiiciiiiiicicieieieiieeeeeeeeeeee e 3-34
Decompressing @ DOM ODbjJect........ccccovuiiiiiiiiiiiiiiiiiiiiiniics s 3-35
Compressing and Decompressing XML from SAX ..o 3-35
Compressing a SAX ObJect.......coiiiiiiiiiiiiiiii e 3-36
Decompressing a SAX ODbJECt.......cccovuiiiiiiiiiiiiiiiiiiiiiciiiccc s 3-36
Tips and Techniques for Parsing XML............cccccocoviiiiniiiiiss 3-37
Extracting Node Values from a DOM TTee.........cccccceeuiiiiiiiininiiiiiiiccrercereeeee e 3-37
Merging Documents with appendChild()cccouoeeieiiiiieiiiic e, 3-38
Parsing DTS ..o 3-39
Loading External DTDS........c.cccccccuiiuiiiiiiiiiieieieieieteieieeeieeie e sesesesenaees 3-39
Caching DTDs with setDOCtyPe........coviiuiiiiiiiiiic s 3-40
Handling Character Sets with the XML Parser.............cccooeoioiiiiniicciccceeece e 3-42
Detecting the Encoding of an XML File on the Operating System............cccccceeverrenencne. 3-42
Detecting the Encoding of XML Stored in an NCLOB Column..........ccccoooveiiiiiinieinnnnns 3-42
Writing an XML File in a Nondefault Encodingcooooiiiiic 3-43
Working with XML in SEHANGSc.ccuiiiiiiiiiiiceccccceeeeee e 3-43
Parsing XML Documents with Accented Charactersccooooeueieiiieieiiiiiciiice 3-44
Handling Special Characters in Tag Namesccccoooiiiiiiiiicciiiccece e 3-44

Using the XSLT Processor for Java

Introduction to the XSLT Processor ... 4-1
PrereqUiSItes. ... s 4-1
Standards and Specifications...........cccciuiiiiiriiiiiiiiii s 4-1
XML Transformation with XSLT 1.0 and 2.0.......ccccccviiiiiiiiiiiiiicceeas 4-2

Using the XSLT Processor for Java: OVerVieW ..o 4-3
Using the XSLT Processor: Basic Process...........ccoeiueueiiiiciiiiiiiiiiciciiccc i 4-3
Running the XSLT Processor Demo Programs...........cccccccovviniiviiinnnnniininccecnen, 4-4
Using the XSLT Processor Command-Line UtIlitycooiiiiiiiiiiiiiccccceecceeennes 4-6

Using the XSLT Processor Command-Line Utility: Example.........ccccooouniiiiiiiniicine. 4-7

Transforming XMLcccocoiiiiiiiiiiiii s 4-7
Performing Basic XSL Transformationc.ccceeeevrnrinnnernnninneccescsees e 4-8
Obtaining DOM Results from an XSL Transformationccoceueeeieieiiicecicceneee 4-9

Programming with Oracle XSLT EXtensions............ccccccccciiiiiiiiiiiiiiiiccccccceeeeeenennas 4-10
Overview of Oracle XSLT EXtENSIONSccvvueviiimiiiiiiiiiiiciece e 4-10
Specifying Namespaces for XSLT Extension FUNctionscccooveiiiiiiiiceiicicc, 4-11
Using Static and Non-Static Java Methods in XSLT.........cccccooiiiiiciiiceeccce, 4-11
Using Constructor Extension FUNCHONScccocoiiiiiiiiiiiiniiic 4-12
Using Return Value Extension FUNCHONS..........c.ccoviiiiiiiiiiic e, 4-12

Tips and Techniques for Transforming XML............ccccccccoviviiiniiiiiiiines 4-13
Merging XML Documents with XSLT..........cccccoiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeees 4-14
Creating an HTML Input Form Based on the Columns in a Table............ccccoooeviiiriinnnnnn. 4-15

5 Using the Schema Processor for Java

Introduction to XML Validation.............cccoiiiiiiies 5-1
PrereqUiSItes. ... 5-1
Standards and Specifications...........ccceuiuiiiiiiiiiiiieiii s 5-1
XML Validation With DTDS........ccccccoiiiiiiiiniiiiiiiii s 5-2

DTD Samples in the XDKc.ccccoiiiiiiiiiieeeeeeereeee e 5-2
XML Validation with XML SChemas..........ccccceeveiiiiiiiiiiiniiiiiiiise e 5-3
XML Schema Samples in the XDKccccooiiiiiiiii e 5-4
Differences Between XML Schemas and DTDS ..o 5-6

Using the XML Schema Processor: OVervieW.............cccooiiiiiiiininininin, 5-7
Using the XML Schema Processor: Basic Process..........cooceueireieiiiciciciciccieeccccee 5-7
Running the XML Schema Processor Demo Programs............ccccceeevvevinnnnneenrnnnnreenen. 5-9
Using the XML Schema Processor Command-Line Utility.......cccccooiiiiiiiiiiiniiice 5-11

Using oraxml to Validate Against a Schema...........cccooooeiiiii 5-11
Using oraxml to Validate Against a DTD........ccccccccoiiiiiiiiiiiiiiicceeeeceeceeeeeeaes 5-12

Validating XML with XML Schemasccccococeiiiiiiiiiiiiiics 5-12
Validating Against Internally Referenced XML Schemas............cccooocriiiiiiiciiiiicciicc, 5-12
Validating Against Externally Referenced XML Schemas...........ccccoceueueuiurvniniiinnnnnnnneenes 5-13
Validating a Subsection of an XML Document..............coorieiiiiiirioiiiiccee, 5-15
Validating XML from a SAX Streamccccoeeieiiiiiieiiiiieece e 5-15
Validating XML from a DOMcccoiiiimiiiiiicceeenceeieee e sesenens 5-17
Validating XML from Designed Types and Elements.............ccccovviiiiiiiieiininicc, 5-18
Validating XML with the XSDValidator Beanccooooiiiiiiiic, 5-20

Tips and Techniques for Programming with XML Schemas..............ccccccocoiinniiiinnne, 5-21
Overriding the Schema Location with an Entity Resolver.........c.c.cccoooiiiiiiiiciiic, 5-22
Converting DTDs to XML SChemasccoovruiiiiiiinieiciecc e 5-23

6 Using the JAXB Class Generator

Introduction to the JAXB Class Generatorc..cccocorereinieriniennentnenineneeieeereseee st seene 6-1
PrereqUiSItes. ... 6-1
Standards and Specifications...........ccceiuiiiiiiiiiiiiiiii s 6-2
JAXB Class Generator FEAtUTES.......cccvvuerierieieieieieieete ettt eseete e sse e e ssesaeneeneeseees 6-2
Marshalling and Unmarshalling with JAXBcccccoviiiiiiinirnrer e 6-2
Validation With JAXBcociiiieiete ettt ettt st sttt ettt et eb et bebes 6-3
JAXB CUSTOMIZATION -ttt ettt ettt ettt et eae et et e st e eaeesbe e st e sbesseebeentensesseensesseenes 6-4

Using the JAXB Class Generator: OVeIVIeWcccccoviiiiiiiiiiiiniinicecennes 6-4
Using the JAXB Processor: Basic Process..........coccueiiiiiioiiiciciiinciec e 6-4
Running the XML Schema Processor Demo Programs............cccccccveviviviiinnninnnnnninnen. 6-7
Using the JAXB Class Generator Command-Line Utilityccocoiiiiiiiiiiiiiiiiiieenns 6-8

Using the JAXB Class Generator Command-Line Utility: Example........ccccccooiiinini. 6-9
JAXB Features Not Supported in the XDK ..o 6-9

Processing XML with the JAXB Class Generator.............ccccccoviiiiiiininiiiinnccecnes 6-9

Binding CompleX TYPeS........couiiriiiiici 6-10
Defining the Schema...........ccccciiiiiiiiiii s 6-10
Generating and Compiling the Java Classes.........cccccccovururuiieirrniirncrcrrreere s 6-11
Processing the XML Data..........cooeuoiiiiiiiiiii s 6-12

Customizing a Class Name in a Top-Level Element.............cccoooooiviiiiiiinice, 6-13

vi

Defining the Schema...........ccooiiiiiiiii s 6-14
Generating and Compiling the Java Classes..........ccoooereiiiiiiciiiicce 6-15
Processing the XIML Data.........ccccceiiiiiiiiiiiececeereeeeereresseees s 6-16

Using the XML Pipeline Processor for Java

Introduction to the XML Pipeline Processor...........cccoccvioirioiniineinenineieeieeeeeeeesee e 7-1
Prere@qUISITES.....cucuiiieiicect s 7-1
Standards and Specifications.............occueieiiiiiiiiice 7-1
Multistage XML ProCeSSING........cccocueueuiuimiuemiirieiiicieieieieieieieeeieeeeeeeeeeeeenee e 7-2
Customized Pipeline PrOCESSES...........ccviiiiiiiiiiiiiiiiiiiiiiiiineces e 7-2

Using the XML Pipeline Processor: OVEIVIEW ..o 7-3
Using the XML Pipeline Processor: Basic Process.........c.cocccociiiiicciiccceeicecceeeceneeennes 7-3
Running the XML Pipeline Processor Demo Programscccccooceueiiiieieiiineiiiceeee, 7-6
Using the XML Pipeline Processor Command-Line Utility...........cccoooiiiiiiiiiiie, 7-8

Processing XML in a Pipeline ... 7-9
Creating a Pipeline Documentc.ccoooiiiiiiiii 7-9

Example of a Pipeline DOCUMENLcccuiiiiiiiiicicc s 7-9
Writing a Pipeline Processor APPplication ..o 7-11
Writing a Pipeline Error Handler ... 7-12

Using XDK JavaBeans

Introduction to XDK JaVABEANSccccceviiiiriiiniiiniciicinicnic ettt s 8-1
Prer@qUISITES....cucviviiieiiit s 8-1
Standards and SPecifiCations..........cccccucuiceiiiiiiiiiiiccce e 8-1
XDK JavaBeans FEaturescccoeeviiiiiiiinieiicieteeetetetete ettt 8-2

DOMBUILAET ..ottt 8-2
XSLTIANSTOTINET ..ottt 8-2
DBACCESS ...ocveiiitetcte ettt s 8-3
XMLDBAGCCESSvoveuiiieteniiietetcee ettt ettt 8-3
XMLDAEf ..ot 8-4
XMLCOMIPTESS.......oviiiiiiiiiiite s 8-4
XSDVAlIAALOTuiniiiciiiiieciree ettt s 8-4

Using the XDK JavaBeans: OVeIVIEWccccccciviiiiiiiiiniiiiiiici e 8-5

Using the XDK JavaBeans: Basic Process............ccoceueieiiiieiiiiiiiicce e 8-5
Using the DOMBuilder JavaBean: Basic Process...........ccccoevviiiiiivnininninniniin, 8-5
Using the XSLTransformer JavaBean: Basic PTOCESScccuoveiiiiiiiiiiiiiicccicccnes 8-7
Using the XMLDBAccess JavaBean: Basic Processc.ccccoeeieiiiciciiicicccc 8-8
Using the XMLDiff JavaBean: Basic Process...........cccccoccuiiiiiiiniiiiiiiiiicccccces 8-10

Running the JavaBean Demo Programsc.cccccoccieiiiiiiieiceeeeeeeeeeeeeieeeneeeneneneees 8-11
Running Samplel ..o 8-15
RUNNing Sample2cccociiiiiiiiiiiiiiiic s 8-15
RUNNING SAMPIESoviiiiiiiiciiccee e s 8-15
Running sampled ... 8-15
Running samplebccccoviiiiiiiiiiiniiiiiii s 8-16
RUNNING SAMPIED ... 8-17
RUNning sample? ... 8-17

vii

RUnning SampleB ..ot s 8-17

RuUNning sampled ... 8-18
Running samplellc.coouiuiiiririiiiiciiceeeeeee s 8-18
Processing XML with the XDK JavaBeansccccooiiiiiiiiiiicceeeienne 8-18
Processing XML Asynchronously with the DOMBuilder and XSLTransformer Beans....... 8-19
Parsing the Input XSLT Stylesheetccccccciiiiiiiiiiiiicccccceeeceee s 8-20
Processing the XML Documents Asynchronously...........cccceeiiiiiicciicccnc 8-21
Comparing XML Documents with the XMLDIiff Beancccoooeiiiiiiiie, 8-23
Comparing the XML Files and Generating a Stylesheetc.cccccccoceiiiiicnnncnnnnn. 8-24

9 Using the XML SQL Utility (XSU)

Introduction to the XML SQL Utility (XSU)cccocouviiiininiiiiiiiiicccs 9-1
Prere@qUISITeS.......oioiieiiiiiee s 9-1
XEU FEATUTES ...ttt 9-1
XSU ReSLIICHONSvivvvvettietee e 9-2

Using the XML SQL Utility: OVervieWccccocoviviviiiiiiiiininiiiiii 9-2
Using XSU: Basic ProCeSscccceuiieiiiiiiiiiiicietc 9-2

Generating XML with the XSU Java API: Basic Processcccccccoecueivrrieiceenneeeenriennns 9-3
Performing DML with the XSU Java API: Basic Process.........cccccoouoiiuiieiiiiciiiiincee 9-4
Generating XML with the XSU PL/SQL API: Basic Process...........ccccovvvviinnininininnnn. 9-6
Performing DML with the PL/SQL API: Basic Process........c.cccococevvrrvnnnrnnnencnnecne. 9-7
INStAlNG XSU ..ot 9-8
Installing XSU in the Database............ccoooiuiiiiiiiiiii e 9-8
Installing XSU in an Application SEIVET..........cccccovvviiirirnerinrrirerrrre e 9-9
Installing XSU in @ Web Server ...t 9-10
Running the XSU Demo Programs..............ccoceueiiiiiiiniiccieceie e 9-11
Using the XSU Command-Line UtIIEYcocciiiiiiiiiiiiiieccceeceeeeeeneeeeneenenens 9-14
Generating XML with the XSU Command-Line Utilityccoooeiiiiiiiiiiiiiia, 9-16
Generating XMLType Data with the XSU Command-Line Utilityccccoooeneiin 9-16
Performing DML with the XSU Command-Line Utility..........cccccoceeiinvininnniinnes 9-16

Programming with the XSU Java APIcccooiiiiiiic e 9-17

Generating a String with OracleXMLQUETYcccooiiiiiiiieiiccce e, 9-17
Running the testXMLSQL Programccccoceucueemiieieieiemeieieieeieieieeieeeneneneenenenesesenenenenens 9-18
Generating a DOM Tree with OracleXMLQUETYccoviiiiiiiiiiiiec e 9-18
Paginating Results with OracleXMLQUETYcccccciiiiiiiiiiiiiiiiiccceceeeeeees 9-19
Limiting the Number of Rows in the Result Setcccccooeiiiniiiiiiiicceee 9-19
Keeping the Object Open for the Duration of the User's Sessionccoceovviviiniuninines 9-20
Paginating Results with OracleXMLQuery: Example...........c.cccocoeiviiiiiininicniinicceines 9-20
Generating Scrollable ReSult Sets ... 9-21
Generating XML from Cursor ODJectSccocueiiuriiieiiieiiieci s 9-22
Inserting Rows with OracleXIMLSaVe..........cccoiiiiiiiiiiiiice s 9-22
Inserting XML into All Columns with OracleXMLSavecccccccoeciiecciccnnnninnnes 9-22
Inserting XML into a Subset of Columns with OracleXMLSave.........c.ccccccoceeriiinrnnnnes 9-23
Updating Rows with OracleXMLSave...........ccooeviiiiniiiiiccecce e 9-24
Updating with Key Columns with OracleXMLSavecccccocovvininnniniininiicccecnes 9-24
Updating a Column List with OracleXMLSave...........cccccccovviiiiiniiniiiiiicens 9-25
Deleting Rows with OracleXIMLSaVe...........ccccooiiiiiiiiiiiiiiiceeee s 9-27

viii

Deleting by Row with OracleXMLSave...........c.ccooiiiiiiiiiiic 9-27

Deleting by Key with OracleXMLSave............cccccooeiiiiiiiiiiiiices 9-28
Handling XSU Java EXCEPHIONSc.ceuiuiuiimiiiiiiiieieiccicccieicceieie e 9-29
Obtaining the Parent EXCEPHONc.covuiiiiiiiiii e 9-29
Raising a NO ROWS EXCEPHONcvoviviiiiiii e 9-29
Programming with the XSU PL/SQL API..........ccccooiniiiiiiiiiiics 9-30
Generating XML from Simple Queries with DBMS_XMLQUeTrycccccooovirieiiiiiriereinnen, 9-30
Specifying Element Names with DBMS_XMLQUETYccccoooiriiiiiiiiiiiccicecceea 9-30
Paginating Results with DBMS_XMLQUETYccccceuimemimimimimiiimeieieeereieeieieneneierenerenenenenenenenes 9-31
Setting Stylesheets in XSU ..o 9-31
Binding Values in XSUcooiii 9-31
Inserting XML with DBMS_XMLSAVEc.ccccoiuiiiiiiiiiiirieiccieiciieecieeeeeee e 9-31
Inserting Values into All Columns with DBMS_XMLSave............cccccoovninnnnnnnniinnnns 9-32
Inserting into a Subset of Columns with DBMS_XMLSave...........cccccovvviinniiinnnnnne 9-33
Updating with DBMS_XMLSAVE........ccccciiuimiiiiiiiiiieieieeeieeeiee e seseseeeaeeees 9-34
Updating with Key Columns with DBMS_XMLSaveccccoooeueiiiiiiiiiiiiccci 9-34
Specifying a List of Columns with DBMS_XMLSave: Examplecccccccooovininiiriennes 9-35
Deleting with DBMS_XMLSAVE........c.cccoeuiuimimiiimimiiiiiiiciceieieicieeteieieie et nenens 9-35
Deleting by Row with DBMS_XMLSave: Examplec.cccccooviiiiiniineiciicieccin 9-35
Deleting by Key with DBMS_XMLSave: Example.........ccccoooiiiiiiiicc 9-36
Handling Exceptions in the XSU PL/SQL API........cccccoeiiiiiiiieeceeeeeeeeeeeees 9-36
Reusing the Context Handle with DBMS_XMLSaVe.........ccccovviiiiiiiiiciciecees 9-36
Tips and Techniques for Programming with XSU.............ccccocoviinni 9-37
How XSU Maps Between SQL and XML........ccccccciiiiiiiiiiceeeeeeeeieeeeeeeeneeeneeeneees 9-37
Default SQL to XML Mapping.......ccccovvuviviiimimniiiniiiiiiissssssssssssesssssnnes 9-37
Default XML t0 SQL Mapping........ccoccueueieiiurieiiiiicicie ettt 9-39
Customizing Generated XMLccccccoiiiiiiiiiiereeeeeee s 9-40
How XSU Processes SQL StatemMentscccccveivevierieiinieieeeeieseeseseeseseeesseseesesseesaesssessessens 9-42
How XSU Queries the Databasecceveeieiiieiiiiieieeieeieseeee sttt sveen e ese e ens 9-42
How XSU INSerts ROWSccuiuiiiiiieieicicieteicice e 9-42
How XSU Updates ROWS........cccviiiiiiiniiiiiiiiicciee s 9-43
HoW XSU Deletes ROWS......c.cccriiicuiiriiiiiieeiectresie ettt s 9-43
How XSU Commits After DML........ccoooiiiiiiiiiiiiiccn e 9-44

10 Using the TransX Utility

Introduction to the TransX Utlity ... 10-1
Prere@qUiSItes.....ccvviiiciiieete s 10-1
TransX utility FEatures ..o 10-2

Simplified Multilingual Data Loading ... 10-2
Simplified Data Format Support and Interfaceccccoeeeiiiniiiiiiii 10-2
Additional TransX utility Features...........cccccoviiniiiinniiiiicnccrcnees 10-2

Using the TransX Utility: OVerview ... 10-3
Using the TransX Utility: Basic ProCessccouoiiurieieiiiiiiiccc 10-3
Running the TransX Utility Demo Programs.............ccccccceiiiiiiiiiiiiiicceeeeeeees 10-5
Using the TransX Command-Line UIYccocoveiiiiiiiiiiieececeeeceeeeeeneeees 10-6

TransX utility Command-Line Options........c.cccooiieieiiiiiiiiiicieci e 10-6
TransX Utility Command-Line Parameterscccccccovuviiiiiiniinninnirnneenes 10-7

Loading Data with the TransX Utilityccooiiiiiiii 10-8

Storing Messages in the Databaseooooiiiiiiiii 10-8
Creating a Dataset in a Predefined Formatcccccoocoiiiiiiiiiiiiiccccccccecceeees 10-9
Format of the Input XML Documentcccoeeeiiiiiiiiiniiniiiiceeeceeeens 10-9
Specifying Translations in a Datasetcccoeeieiiiiiii e 10-11
Loading the Data.........ccoeviiiriiiiiiiiiicrrer et 10-12
Querying the Data..........cooi 10-14

11 Using the XSQL Pages Publishing Framework

Introduction to the XSQL Pages Publishing Frameworkcccccooiinniiiniiiinnine 11-1
Prer@qUISITES....cucviuiiitiieictetctctctt s 11-2
Using the XSQL Pages Publishing Framework: Overview.............ccooviiiniiiinniinne, 11-2
Using the XSQL Pages Framework: Basic Process..........ccocuouiicieieiicicieiiicccce 11-2
Setting Up the XSQL Pages Frameworkcccoooioiiiiiiiiicc 11-5
Creating and Testing XSQL Pages with Oracle JDevelopercccccccoeeeiccncncnnenne. 11-5

Setting the CLASSPATH for XSQL Pagesccccooirueiiiicieieiiieiccie i 11-6
Configuring the XSQL Servlet CONtainercocooiueieiiiiciiieiiceiecc s 11-6

Setting Up the Connection Definitionsccccceeueiiiiririiiinrrniierceereeere s 11-7
Running the XSQL Pages Demo Programs............coccueiiinieiiiinicieiceeecie e 11-8
Setting Up the XSQL DemOSccoviiiriiieiicieieici i 11-9
Running the XSQL DEMOS.........covuiiiiriririiri et 11-10

Using the XSQL Pages Command-Line Utility........cccoooiviiiiiiiiiii 11-11
Generating and Transforming XML with XSQL Servlet...........ccccooiiiiiiiiiiiiiiiiinn. 11-12
Composing XSQL Pages.........ccccouiiiiiniiiiiiiiiii s 11-12
Using Bind Parameters...........coooioiiiiiiiiiiiic s 11-13

Using Lexical Substitution Parameters...........ccccoovoiruiiiiiiieiiiccce e 11-15
Providing Default Values for Bind and Substitution Parameters.............cccccecevururunnce. 11-16

How the XSQL Page Processor Handles Different Types of Parameters...................... 11-17
Producing Datagrams from SQL QUETIes...........ccoorueiiiimieiiinicicieecce e 11-18
Transforming XML Datagrams into an Alternative XML Format..........cccccccceevivviiinnnne. 11-19
Transforming XML Datagrams into HTML for Displaycccceoiiieiniiniciicic 11-22
Using XSOQL in Java Programs ... s 11-24
XSQL Pages Tips and Techniques.............ccccocueiiiiiiiiiiiiiiii s 11-25
XSQL Pages Limitations.........cooieurieiiiicieieiicie it 11-25
Hints for Using the XSQL Servlet ... 11-25
Specifying a DTD While Transforming XSQL Output to a WML Document............... 11-26

Testing Conditions in XSQL Pages.........c.ccceivimieiiiiiiiieiicceec s 11-26
Passing a Query Result to the WHERE Clause of Another Querycccccoviiinnne. 11-26
Handling Multi-Valued HTML Form Parameters.............ccccoooiiiiiiiiiiicnciiicenenes 11-27
Invoking PL/SQL Wrapper Procedures to Generate XML Datagrams...............c......... 11-28
Accessing Contents of Posted XML..........ccccooviiiiiiiiiicc e 11-29
Changing Database Connections Dynamicallyccccccoeerviinnnnnnnnnnrerecnes 11-29
Retrieving the Name of the Current XSQL Page..........ccccoceviiiiniiiiniiiiceins 11-29
Resolving Common XSQL Connection EIrors..........ccccoviviviiiinininiiiiiiiiiiccccccnes 11-29
Receiving "Unable to Connect” EITorsccccccceuiiiiiirneiiiiicrrcccrrenereeeseceaes 11-30
Receiving "No Posted Document to Process" When Using HTTP POST 11-30
Security Considerations for XSQL Pages...........ccccoveuniimeieiniiiieiicceeccee e 11-30

Installing Your XSQL Configuration File in a Safe Directorycccoooeeevicieiiiinnnen 11-30
Disabling Default Client Stylesheet Overrides............cooooiiiiiiiiiiiiiiiices 11-31
Protecting Against the Misuse of Substitution Parametersccccccoviiicncincncncnes 11-31

12 Using the XSQL Pages Publishing Framework: Advanced Topics

Customizing the XSQL Configuration File Name.............cccccconiinniiiii, 12-1
Controlling How Stylesheets Are Processedccoviiiiiiniiiiiiniiiiccccee 12-2
Overriding Client Stylesheets............oooiiiiiiii 12-2
Controlling the Content Type of the Returned Documentcccccovvvvnvrnnnnnnncncenes 12-3
Assigning the Stylesheet Dynamicallycccoooiiiiiiiiiiiii 12-3
Processing XSLT Stylesheets in the Client.............ccooeuoiiiiiiiiic e, 12-4
Providing Multiple Stylesheets ..o s 12-4
Working with Array-Valued Parameters...............ccccocovviviiiiiiiiiiinis 12-5
Supplying Values for Array-Valued Parameterscccooooiiiiiiniiiiiiicccc, 12-6
Setting Array-Valued Page or Session Parameters from Stringscccccceecieciccncccnnne. 12-7
Binding Array-Valued Parameters in SQL and PL/SQL Statements.........ccccccooorrieiriinnnnnen. 12-7
Setting Error Parameters on Built-in Actions ..., 12-10
Using Conditional Logic with Error Parameterscccoccoeiiiiiiiiciciicccccccenenens 12-10
Formatting XSQL Action Handler Errors..........oooceiiiiiiiiiciiiccc 12-11
Including XMLType Query Results in XSQL Pages............ccccccoeiiiiiiiiiiiiiiiccicienes 12-11
Handling Posted XML Content ..o 12-14
Understanding XML Posting Options ..o 12-14
Producing PDF Output with the FOP Serializer............ccccoooiiiiiiiiiiiiicccnes 12-16
Performing XSQL Customizationscccccviiiiiniiiiiiices 12-17
Writing Custom XSQL Action Handlersc..coiiiiiii e 12-17
Implementing the XSQLActionHandler Interfaceccooovoiriiiii 12-18

Using Multivalued Parameters in Custom XSQL Actions........c.cccoeeeeeiiiicccccncnenne 12-21
Implementing Custom XSQL Serializers.........cccocoeueiiiiieiiiiiicieiiccecc s 12-21
Techniques for Using a Custom Serializercccoovoiiiiiiiiiiiicccc 12-22
Assigning a Short Name to a Custom SerialiZer ..o 12-22

Using a Custom XSQL Connection Manager for JDBC Datasourcescccccoouecurierueinnnn. 12-24
Writing Custom XSQL Connection Managers............ccceeueveieieieicieieeeieeeeeeeeeeee s 12-24
Accessing Authentication Information in a Custom Connection Manager 12-25
Implementing a Custom XSQLErrorHandlercoooiioiiiiiiiie, 12-26
Providing a Custom XSQL Logger Implementation.............ccccoeeeiociniiiiicinniceeccne, 12-27

13 Using SOAP with the Java XDK

INtroduction t0 SOAP ... e 13-1
PrerequUiSItes......ccoiiiiiiiiiiiiiiiiiiii s 13-1
Standards and Specifications............ccciiiiiiiiiiiiii 13-1

Using SOAP and the Java XDK: OVEIVIEWcccccoviiiiiiiiiiiiiiiiiiiiiiiiiicineeessesess s 13-2
Subpackages in OTaCE.SOAPc.cueueuiuiuiiiuiieiiiiiieieieieeee ettt eeees 13-2
Subpackages in 01g.apache.S0aP.........ccciiiiiiiiiiiiii s 13-3

Developing SOAP Applications with the Java XDKccccocoiiiiniiiiniicceeeceeee 13-4
USING SOAP PTOVIAETSuuimiiiiiiiiciecciccceeeee ettt sees 13-4
Using SOAP TIaNSPOIEScviiuiuiiiiiiiiiniiitcictttttt e 13-4

xi

Using SOAP Handlers...........coooiiiiiii s 13-4

Using the SOAP Request Handler ..o 13-5
Tips and Techniques for Using SOAP with the Java XDKccccccccoovniiiiinniiiiii, 13-5
Oracle Database SOAP and IDAPccooiiiieiiieieeteeeeete ettt ettt sr e sre e sreennas 13-5
Oracle Database SOAP Security Features...........ccooiiiiiiiiiiiiiiiiiccces 13-6

Partll XDK forC

14 Getting Started with C XDK Components

Installing C XDK COMPONENtS.............coiiiiiiiiiiiiiiiiiiiciecse e 14-1
Configuring the UNIX Environment for C XDK Components..............ccceviiinniininnncnnnn 14-2
C XDK Component Dependencies on UNIX ..o 14-2
Setting C XDK Environment Variables on UNIX..........ccccooiiiie, 14-3
Testing the C XDK Runtime Environment on UNIX..........ccccccoiiiiiniiinnicreeceeeene 14-3
Setting Up and Testing the C XDK Compile-Time Environment on UNIX................c.......... 14-4
Testing the C XDK Compile-Time Environment on UNIXc.cccoooiiiiiiiiinins 14-5
Verifying the C XDK Component Version on UNIXcccoiiiniiinneiiceeeeeeeenes 14-5
Configuring the Windows Environment for C XDK Componentsc.cccocovvrreiiiininnnnns 14-5
C XDK Component Dependencies on Windows............ccceuoiiiieieiiiicieiiicec e 14-5
Setting C XDK Environment Variables on WIndowscccccccceceieiiinecicceeeeeneenes 14-6
Testing the C XDK Runtime Environment on Windows ..o, 14-6
Setting Up and Testing the C XDK Compile-Time Environment on Windows 14-7
Testing the C XDK Compile-Time Environment on Windows..........ccccccccevcvvvinnnenne. 14-7

Using the C XDK Components with Visual C/C++ on Windowscccccevviiiiinninnnnn 14-8
Setting a Path for a Project in Visual C/C++ on Windows ..o, 14-8

Setting the Library Path in Visual C/C++ on Windows..........ccoevviviivvniinniicene 14-9
Overview of the Unified C AP ... 14-10
Globalization Support for the C XDK Componentsccccceiiiiiiiiiiiiiiiicceenes 14-11

15 Using the XML Parser for C

Introduction to the XML Parser for C..........ccooiiiiiiiiiiiccieecceeeeereeere et 15-1
PrerequUiSites.......ccoviiiiiiiiiiiiiiiic s 15-1
Standards and SpecifiCations...........ccciiiiiiiiiiiiiii s 15-2

Using the XML Parser for C...........cccccoviiiiiiiiiiiiiiiiicrcce s 15-2
Overview of the Parser APLfOr C........cccooviiiiiiiiiiiiiic e 15-2

XML Parser for C Datatypes.........cccviirieieiiiicieiici s 15-3
XML Parser for C Defaults........cococcirreiiiiniccirnieccee et 15-3
Using the XML Parser for C: Basic PrOCESSccceceuiuiuiciiieiiieeeceeieeeieeeneieeeenene s 15-4
Running the XML Parser for C Demo Programs............cccceueviieieieiiciciciiieeecie e 15-6
Using the C XML Parser Command-Line Utilityccccccovvvviiiinniiiininiine 15-8
Using the XML Parser Command-Line Utility: Examplecccooiiiiiiiiiinccnnn. 15-9

Using the DOM APIL fOr Cc.cooiiiiiiiiiiiii s 15-10
Creating the Top-Level COnteXt........ccccciiiiiiiniiiiiiiiiiiinc e 15-10
Controlling the Data Encoding of XML Documents for the C APccccocooiiiiiinnaes 15-10
Using NULL-Terminated and Length-Encoded C API Functions..........cccccovirieiiiinicnnnee. 15-11
Handling Errors with the C APL.......cccccoviiiiiiiiiiiiicccc e 15-12

Xii

Using the SAX APLOr C.......cccooviiiiiiiiiiiiiiic s 15-12

Using OCI and the XDK C APcccooiiiiiiiiiiiiccs e 15-12
Using XMLType Functions and Descriptions...........ccccccovviiiininiiiiiiniiiiccee 15-12
Initializing an XML CONteXtccooueiiiiiiiiiiiciec i 15-13
Creating XMLType Instances on the Clientc.cooiiiiiiiiiicic 15-14
Operating on XML Data in the Database Serverccccccoeiirrniinnnnnrrnnnerreeene 15-14
Using OCI and the XDK C APL: EXampIes.........ccocoveuiiniiiieiiiicieeccici i 15-14

16 Using the XSLT and XVM Processors for C

17

18

XVIM PIOCESSOTcotiiiiniieicnciete ettt ettt b et a e n s 16-1
XVM Usage EXamPIe.......c.cciiiiiiiiiiicicict et 16-1
Using the XVM Processor Command-Line Utility ... 16-3
Accessing XVM Processor for C........oiiiii 16-3

XSLT PIOCESSOL.......covvininiietincieee ettt b st s ettt st s et aesees 16-3
XSLT Processor Usage EXample.........cccccciuiiiiiiiiiiiiiiecccieieeiee e senesennens 16-3
XPath Processor Usage EXample ..o 16-4
Using the C XSLT Processor Command-Line Utility.......ccccoooiiiiiiii, 16-4
Accessing Oracle XSLT processor fOr C........ccociiiiiimiiiiiiieeieieeeieeereneneieneseneseeeseseseseneeees 16-5

Using the Demo Files Included with the Softwarecccccocoviiiinin 16-5
Building the C Demo Programs for XSLTcccooiiiiiiiiiiieeccc 16-6

Using the XML Schema Processor for C

Oracle XML Schema Processor for C.............cooiiiiiiiiiiiicceeene e 17-1
Oracle XML Schema for C FEatures..........ccocouvuiiiiiiiiininiiiic e 17-1
Standards CONfOIMANCE.........ccuiuiiiiiiiiiiiiii s 17-2
XML Schema Processor for C: Supplied Softwarecccoooiiieiiiiie, 17-2

Using the C XML Schema Processor Command-Line Utility...........cccccococooni. 17-2

XML Schema Processor for C Usage Diagram............cccccocovviiiniiiiiiiniiiiiiis 17-3

How to Run XML Schema for C Sample Programs.............ccccoceviviivinnnnninninninns 17-3

Using SOAP with the C XDK
Introduction t0 SOAP fOr C......cooiiiiiiiiicicee ettt 18-1
SOAP Messaging OVEIVIEW ... 18-2
SOAP Message FOImat.........couiiuiiiiiiiciieiciet s 18-2
USING SOAP CHENLSvviiiiiiiiiiiciciieic e 18-3
USING SOAP SEIVETScvvimiiiiiiiiiiiictic s 18-4

SOAP CFUNCHIONS. ...ttt sttt 18-4

SOAP Example 1: Sending an XML Document..............cccccccoiiiiiiiiiiiiicceeeeeeenennas 18-6

SOAP Example 2: A Response Asking for Clarification ... 18-11

SOAP Example 3: Using POST ...t 18-13

Part lll Oracle XDK for C++

19

Getting Started with Oracle XDK Components for C++
Installing the C++ XDK COmMPONENtScoooviiiiiiiiiiciec s 19-1

xiii

Configuring the UNIX Environment for C++ XDK Componentsccccocoooiiiiiiiirinnnnn, 19-1

C++ XDK Component Dependencies on UNIXccoooiiiiiiiiiiiice, 19-1
Setting C++ XDK Environment Variables on UNIX ... 19-2
Testing the C++ XDK Runtime Environment on UNIX.........cccoooiiiiiiiiii, 19-2
Setting Up and Testing the C++ XDK Compile-Time Environment on UNIX...................... 19-2
Testing the C++ XDK Compile-Time Environment on UNIX..........c.cccccceiiiinnninnnne. 19-2
Veritying the C++ XDK Component Version on UNIXccccoooiiiiiiiiien, 19-2
Configuring the Windows Environment for C++ XDK Components...............cccccceoeuiviiiinnnnes 19-3
C++ XDK Component Dependencies on WINdOWs...........ccccceuvueueiirniiinnneiereeeeeeees 19-3
Setting C++ XDK Environment Variables on Windowsccooceviiiiiiiiiiciiicce, 19-3
Testing the C++ XDK Runtime Environment on Windowsccoooiiiiiiicccnnn, 19-3
Setting Up and Testing the C++ XDK Compile-Time Environment on Windows 19-3
Testing the C++ XDK Compile-Time Environment on Windows............cccooevennnnnes 19-3
Using the C++ XDK Components with Visual C/CH+oouoiiiiiii 19-4

20 Overview of the Unified C++ Interfaces

21

Xiv

What is the Unified CH++ API? ..o 20-1
Accessing the C4++ Interface ... 20-1
OracleXML NAMESPACE........cocouiuiiiiiiiiiiii bbbt s 20-2
OracleXML INEEIfacesc.ccuiiiiiiiiiicicci e 20-2
CHX INAIMESPACE ...ttt ettt ettt b e a et a st sa et sae st eenenaenees 20-2
OracleXML DatatyPesccccuiiimiiieiiiieiet e 20-2
CEX INEEITACES ... 20-2
JO NAIMESPACE ...ttt sttt sttt st ettt r e e s e e e a e et sa st sa et sae st senesaeneen 20-3
IO DatatyPes ..c.cuviieiecieiece s 20-3
JO INEEIEACES ... 20-3
TOOIS PACKAGE ...t 20-3
TOOIS INEEILACES.....ocviiiiiiiiiic s 20-4
Error Message Files ... 20-4

Using the XML Parser for C++

Introduction t0 Parser fOr Ca ..ottt ettt st sttt 21-1
DOM NAMESPACEooveueriniiiiiiieiiteereee ettt sttt ae ettt e s e e eseseese st e e sae st aesesaeseseenesaenessenessenee 21-2
DOM DatatyPes.......ccueiiiiieieiiiieie ettt 21-2
DOM INEETLACES ..eveuvvinieiiieiiieitrtetsie ettt ettt ettt sttt b bbbttt bbbt e b et e b et e be e be e ebe st ebeneene 21-2
DOM Traversal and Range Datatypescccccccccciiiiiinininiinrceeereseeseeeee s 21-3
DOM Traversal and Range Interfaces...........coooeviiciiiiiciiiic 21-3
Parser NAIMESPACE..........cciviiiiiiiietcceee ettt 21-4
GParser INTETTACEcucuiuiiiiiiiicieicce e 21-4
DOMParser INterface.........ccocoiviiiiiiiiiiiiiiiici s 21-4
SAXPATSET INEEITACE ...cveuieeiiiiieieeeee ettt ettt 21-4
SAX Event Handlers ... 21-4

Thread Safety ... s 21-4
XML Parser for CH+ USAGE ... 21-4
XML Parser for C++ Default Behavior ... 21-4
C+ SamPle FAIES ..o s 21-5

22 Using the XSLT Processor for C++

AccesSING XSLT £Or C..viiiiiiiiiiiiiiiiic s 22-1
XSI INQINESPACE ...ttt sttt a et a e s enen e nenes 22-1
XSL INEEITACES ...ttt s 22-1
XSLT for C++ DOM Interface Usage............ccccovviiiniiiiininiiiiiiiiiiiiisss 22-2
INVOKING XSLT £Or Ca ..o s 22-2
Command Line USAGE........cceviuiiriiiiiiieiictci s 22-2
Writing C++ Code to Use Supplied APIs ..o 22-2
Using the Sample Files Included with the Software..............ccccooiiniinie 22-2

23 Using the XML Schema Processor for C++

Oracle XML Schema ProcesSor fOr C+ooviiiirieiieieiieieieeceeete ettt see e se e s eneessesns 23-1
Oracle XML Schema for CH+ FEAtUTES.........ccouieiiiiieieiieieeeeeeee ettt 23-1
ONliNe DOCUMENTALIONccuiiiiieiieiicieiectete ettt ettt eeesreeaesteeaesbeessesseessesseensesseenes 23-1
Standards CONLOTTIANICEccveveieieieeeieiesesestestetestestesteteseesessessessesessessessessessessessesensessessenses 23-2
XML Schema Processor API ..ottt rae e sae e be s e seessesasseesessaensesns 23-2
Invoking XML Schema Processor for C+ ..o 23-2
Running the Provided XML Schema for C++ Sample Programs..............ccccoevivniiininnnnnnne, 23-2

24 Using the XPath Processor for C++

XPath INterfaces ... 24-1
SaMPle PrOGIAMS........cooviiiiiiiiiiiiiic bbb 24-1

25 Using the XML Class Generator for C++

Accessing XML C++ Class Generator..............coooiioiiiiiiiiiiicicc s 25-1
Using XML C++ Class Generator.............ccccoououiiiiiiiiiicie et 25-1
External DTD Parsing........ccccccccciiiiiiiiciiiiceieieieeieieeieeeieeeeteeese e seseees 25-1
Error Message Files.........coiiiiiiiiiiiiicic s 25-1
Using the XML C++ Class Generator Command-Line Utilitycccccooovvnnnnnnninnnn 25-2
Input to the XML CH++ Class GENETAtOrc.cceueuruririiirieerireererirereeeeees e 25-2
Using the XML C++ Class Generator Examples............c.c.cccooooiiiiiie 25-3
XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml...... 25-3
XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd....... 25-3
XML C++ Class Generator Example 3: CG Sample Program...........cccccocevvviviiiniiiininnnnnnn, 25-3

26 Using SOAP with the C++ XDK
Part IV Oracle XDK Reference

27 XSQL Pages Reference

XSQL Configuration File Parameters..............cccccoeiiiiiiiiiiniiiiicccces 27-2
KXSQLIACION ... 27-6
<XSLidelete-TEQUESTE>ccooviviiiiiiicc e et 27-8
XSLIAMI> Lo 27-10
SXSQLAE-PATAINDS ... 27-11

XV

<XSALANCIUA@-OWAS ... 27-13

<xsql:nclude-Param> ... 27-15
<xsql:include-posted-XmI> ..o e 27-16
<xsql:include-request-params>cccooiiiiiiiiiiniiiii s 27-17
<XSQLANCIUAE-XINI> ..o 27-19
XSQLANCIUAE-XSALS ..ttt 27-20
SXSQLANSEIE-PATAIN> ..ottt ettt e 27-22
<XSQLANSEIt-TEQUESE> ... 27-23
XSQLIQUETY> ..o 27-25
<XSQLref-cursor-fUNCHion> ... 27-28
SXSQLISEt-COOKIES ... 27-30
<XSQLiSet-Page-Param> ... 27-32
<XSQL:Set-S@SSION-PATAIM> ..ot 27-35
<xsql:set-stylesheet-param>ccooiiiiiiiiiii e 27-37
XSQLUPAAtE-TEQUESES ...t 27-39

28 Data Loading Format (DLF) Specification

INtroduction tO DILFoocooiiiieeeeeee ettt ettt e st aesse e s e s seesesseensaesaensesneensennes 28-1
Naming Conventions for DLF...........cccoooiiiiiiiii 28-1
Elements and AIIDULEScc.ocvieuiiiiiiceeceeeteeee ettt ettt ens 28-1

VIAIUES ..ottt ettt ettt st et e st e b e s st e s e e st et e e st et e e st e ae et e seensenseenteereensennaens 28-2

FAle EXEENSIONSviviiieciieieeiietiett ettt et ete et e st e et e e et e st e esa e seessesseesaesseessesseessansaessansesseensenses 28-2
General Structure Of DLF ..ottt ettt e e s re b re s e s va s s beeaneseenes 28-2
Tree Sructure Of DLEovoiiiieieieteeeeeee ettt ettt st st sb e b s s esaessesessessensas 28-2
DLF SPecificationsccccoiiiiiiiiiiiiiiiiii s 28-4
XML Declaration in DLEccoooiiiiiiiieieceeeeteeeet ettt eve et s e v e ve et e s e eseeraesessnesaeeanas 28-4
Entity References in DLE.........cccocciiiiiiiiicieceeceee e eneseeees 28-5
Elements N DILEocviiieiieiciecece ettt ettt be st sbessae e e s e sseessesseessesseessesseessenseas 28-5
Top Level Table Elementcccoiiiii i 28-5
Translation EIEMENTESccccvvvivieieicieieieieesest ettt ettt et bessesessessesseseesessassens 28-6
Lookup Key EIementscooriiiiiiiiiiiicii s 28-6
Metadata EIBINENTScc.couieiiiiciiieceeeteceee ettt ettt ettt b s baebeere e s e saens 28-6

Data EIEIMENTSecviieieieieiieieteteteeteete sttt ettt ssesa e st ssaesessass e sessessessessessassassasessessessessessens 28-7
AEIDULES I DILF ..ottt ettt et sre e ae st e s e e ae e b e s saesseeseesaesneessenneas 28-7
DLE ATIDULESviviiiecteceeteecteee ettt ettt ettt ve et eaeere e be e b e beeraebeesseseensenseenns 28-8

XML Namespace ArIDULESccoviiiiiiiiiir e 28-10

DLF EXQMIPIES ...t 28-10
Minimal DLE DOCUITIENTcovieiiiiieiietieeeeie ettt ettt ereeae e eeaeeraeseessenseersenseeseenns 28-10
Typical DLE DOCUIMENLccoveiiiiiiiiciiree et 28-10
Localized DLF DOCUIMENLEccooieierieiisiieieseetesieeteseeseesseetesseesaesseesaesseessessesssesseessessesssessesnes 28-12
DILEF REEEICICESocuvivieiiieieiiicteeie ettt ettt et et e ete et e beetesbeesbeessebeeseesbeessenteessenseesseseersenseensas 28-13

29 XDK Standards

XML Standards Supported by the XDKcccccouiiiiiiiiiiiiiscs 29-1
Summary of XML Standards Supported by the XDK........ccccccoueuiiiinniiiincciccreeeeee 29-1
XML Standards for the XDK fOr Java.......coeeerererieneieieieceeeeeese ettt 29-2

DOM Standard for the XDK fOr Javacccceiririirienieieieieieieteeee et esesse s 29-2

XVi

XSLT Standard for the XDK fOr Java......cccceceeirirenenienieieeeeeceeeestesiese ettt 29-3

JAXB Standard for the XDK fOr JaVa.......cceererierieieieieieieeeiese e e 29-5
Pipeline Definition Language Standard for the XDK for Javaccccccoeeueivvvvncnnnnne. 29-5
Character Sets Supported by the XDK.........ccccoiiiiiiiiiiiiics 29-5
Character Sets Supported by the XDK for Javacccccceiiiiiniiiiiiiiniiine 29-5
Character Sets Supported by the XDK for C........ccccoiiiiiiiiiiiiiceeeeeeeeeieeeeeeeeeeeees 29-6

A Oracle XDK for Java Error Messages

XML EXTOr MESSQZES ..ottt A-1
XML Parser EITOr MESSAZESccceviiiiiriiiiiiiiiiitctit s A-1
XML-20003: missing token string at line string, column string..........cccevvvvvininninnnnnn A-1
XML-20004: missing keyword string at line string, column Stringcccceveveveverrrencenes A-1
XML-20005: missing keyword string or string at line string, column string A-1
XML-20006: unexpected text at line string, column string; expected EOF......................... A-1
XML-20007: missing content model in element declaration at line string, column string........

A-2
XML-20008: missing element name in content model at line string, column string......... A-2

XML-20009: target name string of processing instruction at line string, column string is
reserved A-2

XML-20010: missing notation name in unparsed entity declaration at line string, column

string A-2

XML-20011: missing attribute type in attribute-list declaration at line string, column string .
A-2

XML-20012: missing white space at line string, column string............ccocoeueveeceieisicrucnenne. A-2
XML-20013: invalid character string in entity value at line string, column string A-2
XML-20014: -- not allowed in comment at line string, column string...........cccccevvvvvnnennnn A-2
XML-20015:]]> not allowed in text at line string, column stringcccccevvvvniiinininnnnnns A-3
XML-20016: white space not allowed before occurrence indicator at line string, column
string A-3

XML-20017: occurrence indicator string not allowed in mixed-content at line string, column
string A-3

XML-20018: content list not allowed inside mixed-content at line string, column string A-3
XML-20019: duplicate element string in mixed-content declaration at line string, column
string A-3

XML-20020: root element string does not match the DOCTYPE name string at line string,
column string A-3

XML-20021: duplicate element declaration string at line string, column string A-3
XML-20022: element string has multiple ID attributes at line string, column string A-3

XML-20023: ID attribute string in element string must be #IMPLIED or #REQUIRED at line
string, column string A-4

XML-20024: missing required attribute string in element string at line string, column string.

A-4
XML-20025: duplicate ID value: SEFing........ccoovivevviviiirirrcciccceeeeeeee s A-4
XML-20026: undefined ID value string in IDREF...........ccccccooovviiininiiiiiiin, A-4

XML-20027: attribute string in element string has invalid enumeration value string at line
string, column string A-4

XML-20028: attribute string in element string has invalid value string, must be string at line
string, column {5} A-4

xvii

xviii

XML-20029: attribute default must be REQUIRED, IMPLIED, or FIXED at line string,
column string A-4

XML-20030: invalid text in content of element string at line string, column string A-4
XML-20031: invalid element string in content of element string at line string, column string.
A-5

XML-20032: incomplete content in element string at line string, column string A-5
XML-20033: invalid replacement-text for entity string at line string, column string A-5

XML-20034: end-element tag string does not match start-element tag string at line string,
column string A-5

XML-20035: duplicate attribute string in element string at line string, column string...... A-6
XML-20036: invalid character string in attribute value at line string, column string A-6
XML-20037: invalid reference to external entity string in attribute string at line string,
column string A-6

XML-20038: invalid reference to unparsed entity string in element string at line string,
column string A-6

XML-20039: invalid attribute type string in attribute-list declaration at line string, column
string A-6

XML-20040: invalid character string in element content at line string, column string A-6
XML-20041: entity reference string refers to itself at line string, column string A-6
XML-20042: invalid NmMtoKen: stringcccccevviiiiiiiiiiiniiiiiiiics A-6
XML-20043: invalid character string in public identifier at line string, column string..... A-7
XML-20044: undeclared namespace prefix string used at line string, column string A-7

XML-20045: attribute string in element string must be an unparsed entity at line string,
column string A-7

XML-20046: undeclared notation string used in unparsed entity string at line string, column
string A-7

XML-20047: missing element declaration string..........ccceeeeeueueiiiciciniicieiecceeie, A-7
XML-20048: duplicate entity declaration string at line string, column string.................... A-7

XML-20049: invalid use of NDATA in parameter entity declaration at line string, column
string A-7

XML-20050: duplicate attribute declaration string at line string, column string................ A-7
XML-20051: duplicate notation declaration string at line string, column string A-7
XML-20052: undeclared attribute string used at line string, column string...................... A-8
XML-20053: undeclared element string used at line string, column stringcce....... A-8
XML-20054: undeclared entity string used at line string, column string...........ccccoeuevenees A-8
XML-20055: invalid document returned by NodeFactory's createDocument A-8
XML-20056: invalid SAX feature Strifg.........ccovviviviiiniiiiiine A-8
XML-20057: invalid value string passed for SAX feature string........ccccvvvvvvnivinnenennne. A-8
XML-20058: invalid SAX PIrOPErty SHINgcovvvevrurerereeirererreeecirereeeeeeee s A-8
XML-20059: invalid value passed for SAX property stringccoevvivvniininininnnnnn. A-8
XML-20060: Error occurred while opening URL st7ifgcccovueveiniieininiiieeicieieene A-8
XML-20061: invalid byte stream string in UTF8 encoded datacccccceveueueuiivivevinininnnne. A-8
XML-20062: 5-byte UTE8 encoding not supported ... A-9
XML-20063: 6-byte UTE8 encoding not supported............ccoeeueieireiiiiicieieiniceieceeae A-9
XML-20064: invalid XML character SHIngccocovevvurerrneneiirnrcecrreeeseeseeeeecss s A-9
XML-20065: encoding string doesn't match encoding string in XML declaration............ A-9
XML-20066: encoding string not sUpported.........ccoeeiieiiiiiiiiciec A-9
XML-20067: invalid InputSource returned by EntityResolver's resolveEntity A-9
XML-20100: EXpected StiNg.ccccveviiiiiiiiiiiiiiiiiiiciciciciciccccscs s A-9

XML-20101: Expected string OF SEYNG......cccccovvvviviiiviiiiiiiiiiciiiiciiiccciccs s A-9
XML-20102: Expected string, string, O SYING.cccovvvuviviiiiiiiiniiiiiiiiiciicnsses A-9
XML-20103: Illegal token in content model.cccccoceiiiiiiiiiiiicceeeecceeeeeeeees A-9
XML-20104: Could not find element with ID string..........cccccoevvvivvivniininiciicinn, A-10
XML-20105: ENTITY type Attribute value string does not match any unparsed Entity..........
A-10

XML-20106: Could not find Notation SHINgG.........ccovvvvrvverrrrcircreeeeeeeeeeeeeaes A-10
XML-20107: Could not find declaration for element string.cccceevvvviviiniinnnnnnnn A-10
XML-20108: Start of root element expected.ccoovoiiiiii A-10
XML-20109: PI with the name "xml' can occur only in the beginning of the document............
A-10

XML-20110: #PCDATA expected in mixed-content declaration...........cccccceevevivivnrinnnnen. A-10
XML-20111: Element string repeated in mixed-content declaration.ccccceeuvvvvnnnne. A-10
XML-20112: Error opening external DTD string.........ccccoovviivinininiiinininiiiinicccnes A-10
XML-20113: Unable to open input Source (String).......ccceevvverereriririiireririisiiiiesiisenennns A-10
XML-20114: Bad conditional section start syntax, expected '[.......cccccooemeiiiiiiininins A-10
XML-20115: Expected ']]>" to end conditional section...........cccccoceueucuciceciciciciceiieieienenes A-10
XML-20116: Entity string already defined, using the first definition.c.cccccooeneie. A-10
XML-20117: NDATA not allowed in parameter entity declaration.cccccocooeeeieinne. A-10
XML-20118: NDATA value required.c.cccccocuiuemiiiiiiiiiiiiccceeieeeeeeeeeeeneeeeeeeeeeeeeeees A-10
XML-20119: Entity Value should start with quote.........c.c.cooooii A-10
XML-20120: Entity value not well-formed. ..o A-11
XML-20121: End tag does not match start tag S{ring.cccoeeeveveeevererrvenerrrereeereenes A-11
XML-20122: '=" missing in attribute. ..o A-11
XML-20123: '>' Missing from end tag.cocoeoeueiiiimieieiiiieiecc e A-11
XML-20124: An attribute cannot appear more than once in the same start tag. A-11
XML-20125: Attribute value should start with quote..........cccccooviiiiiiii A-11
XML-20126: '<' cannot appear in attribute value. ... A-11
XML-20127: Reference to an external entity not allowed in attribute value. A-11
XML-20128: Reference to unparsed entity not allowed in element content.................... A-11
XML-20129: Namespace prefix string used but not declared.cccccevviviviiinnnn A-11
XML-20130: Root element name must match the DOCTYPE name..........cccccocevvirinnnnnes A-11
XML-20131: Element string already declared. ..o A-11
XML-20132: Element cannot have more than one ID attribute............cccccccccoeeiinnnnnen A-11
XML-20133: Attr type MISSING. ...cvcveiiiiiiiiiiiiiiicirc e A-11
XML-20134: ID attribute must be declared #IMPLIED or #REQUIRED.......................... A-11
XML-20135: Attribute string already defined, using the first definition.......................... A-11
XML-20136: Notation string already declared.ccccoovviiinniiiiiiirrccceee A-12
XML-20137: Attribute string used but not declared............ccccoceeeviiiiiniiiiiii, A-12
XML-20138: REQUIRED attribute string is not specified...........cccccevuvrvvinvniinnnnnne. A-12
XML-20139: ID value string is Ot UNIQUE.ccccceueuiuiiiiiiiiiiiiiiieccccceeeee s A-12
XML-20140: IDREF value string does not match any ID attribute value. A-12
XML-20141: Attribute value string should be one of the declared enumerated values. A-12
XML-20142: Unknown attribute type.ccoceeuimimiiiiiiiiicicccieccceceeeeeeeeeeeeeeeeees A-12
XML-20143: Unrecognized text at end of attribute value. ..o A-12
XML-20144: FIXED type Attribute value not equal to the default value string.............. A-12
XML-20145: Unexpected text in content of Element Sring.c.cccoovvevevvevervvvverrcnennes A-12

Xix

XML-20146: Unexpected text in content of Element string, expected elements string... A-12
XML-20147: Invalid element string in content of string, expected closing tag................ A-12
XML-20148: Invalid element string in content of string, expected elements string. A-12
XML-20149: Element string used but not declared.cccccoeeeiiiiiiniiiiiiienn, A-12
XML-20150: Element string not complete, expected elements string...........cccooeeeruerennnes A-12
XML-20151: Entity string used but not declared.ccccoeeiiiiiiiiniiicirceceee, A-12
XML-20170: Invalid UTF8 encoding.cccouoeurieiiiiurieiiiiciciecci s A-13
XML-20171: Invalid XML character(Strirng).ccurreieniiiiiiiinieiccisiciceeeceeesseenens A-13
XML-20172: 5-byte UTE8 encoding not supported.ccocoeeeeeueccceercceencrenenenenens A-13
XML-20173: 6-byte UTF8 encoding not supported.cccceueuiiieieiiieiciiiceec A-13
XML-20180: User Supplied NodeFactory returned a Null Pointer.c.ccccoooneiiine. A-13
XML-20190: Whitespace required.cccccoccueuiiiiuiiiiiiiiecceeeeeeeeeeee e A-13
XML-20191: '>' required to end DTD. ..o A-13
XML-20192: Unexpected text in DTD.ccccoouiiiiii A-13
XML-20193: Unexpected EOF.ccccccoiiiiiiiiiiiccceeeeeeeetee e A-13
XML-20194: Unable to write to output stream.cccoeeveeiiiniiiiiiiec A-13
XML-20195: Encoding not supported in PrintWriter.cccoooriiiriiii A-13
XML-20200: Expected string instead Of sEFing.cccovuvevuveveirirrviicrrcecrceeceeeeaes A-13
XML-20201: Expected string instead Of St7iNg.ccocoviiiiiiiiniiiiniiiiiaes A-13
XML-20202: Expected string to be SHing.ccccvvvviiiiiiiiiniiiiiiiiiiicicccccscs A-13
XML-20205: EXPECEd SEING. ...vvveeeiiiiiirreicceeeeceee e A-13
XML-20206: Expected string OF SEYNG.......ccccvviviveiiiiiiiiiiieiiiiiiccicicciceee s A-13
XML-20210: Unexpected SE7ing.oouocueueiircieieiicie ettt A-14
XML-20211: string is not allowed I SEFING.cevuvvvieiririricriirrrcceereee s A-14
XML-20220: Invalid INpUtSOULCE.oucviviiiiiiiiiiic s A-14
XML-20221: Invalid char in text. ... A-14
XML-20230: Illegal change of encoding: from st7ing to SHiNg.ccccovvuvevevevererrrererirrene A-14
XML-20231: Encoding string is not currently supported.cccoceevveiiinniiinienennn, A-14
XML-20240: Unable to open InputSource. ..o A-14
XML-20241: Unable to Open entity SIriNg.cccccevuveveeirererirereirirreeceeereeeee e A-14
XML-20242: Error opening external DTD string..........cccocovvvviiniiiiniiiiiiiciiccnns A-14
XML-20250: Missing entity SEFINgG.coceeeueueueiciitiieicicicictcieeccee e A-14
XML-20251: Cyclic Entity Reference in entity Strifg.........ccccceeveevieicicvvneciccrieceeeens A-14
XML-20280: Bad character (SHing)......cccoeeiiiiriiiiiiiniiiiiiiiicctcccee e A-14
XML-20281: NMToken must contain atleast one NMChar.ccccccccoeiiiiinininnnnn. A-14
XML-20282: string not allowed in a PubldLiteral.........c.cccccccooiiiiiiiiiiiiiccee A-14
XML-20284: Illegal white space before optional character in content model. A-14
XML-20285: Illegal mixed content model............cccoiiiiiiiiiiiiiiiiceee A-14
XML-20286: Content list not allowed inside mixed content model.ccccccoevrninnnes A-15
XML-20287: Content particles not allowed inside mixed content model........................ A-15
XML-20288: Invalid default declaration in attribute declaration.............cccccceuvurirninnnnnn. A-15
XML-20500: SAX feature string not recognized.ccccvuvueueiirniiiicnrnccrcreceeees A-15
XML-20501: SAX feature string not sUPPOrted. ..o A-15
XML-20502: SAX property string not recoOgnized.cccocuevvvvieeieiiiceeieiiceeee e A-15
XML-20503: SAX property string not SUPPOTted.coovuveverurerereririrerrrrcrereeeeeeeeeaes A-15
DOM EITOT MESSAZESocvvveiiiiiiiiiieieiereie e A-15
XML-21000: invalid size string specified ... A-15

XML-21001: invalid index string specified; must be between 0 and string...................... A-15
XML-21002: cannot add an ancestor as a child node............c.cooooeiiiiiii A-15
XML-21003: node of type string cannot be added to node of type string A-15
XML-21004: document node can have only one string node as childc.ccccceveeni A-15
XML-21005: node of type string cannot be added to attribute list............ccoevviiiiinnnnn A-16
XML-21006: cannot add a node belonging to a different document............cccccceveveennee A-16
XML-21007: invalid character string in NAMEccccoevvveveviieieiiiiiiieece s A-16
XML-21008: cannot set value for node of type string........cccocvvvvvvviniiiniiininne, A-16
XML-21009: cannot modify descendants of entity or entity reference nodes................. A-16
XML-21010: cannot modify DTD's content............ccccceveevriiiieiiniiiiiecccneees A-16
XML-21011: cannot remove attribute; not found in the current element........................ A-16
XML-21012: cannot remove or replace node; it is not a child of the current node......... A-16
XML-21013: parameter string not recognized............ccceeueveeiieiiciiieiiceie A-16
XML-21014: value string of parameter string is not supported..........ccccoevoriiiiiirieines A-17
XML-21015: cannot add attribute belonging to another elementc.ccccccccceueennnee. A-17
XML-21016: invalid namespace string for prefix string ... A-17
XML-21017: invalid qualified name: StFingccoceueveioceieiiiiiiiceecce e A-17
XML-21018: conflicting namespace declarations string and string for prefix string....... A-17
XML-21019: string object is detachedccccoeveiiiiiiniiiiiiiiiii A-17
XML-21020: bad boundary specified; cannot partially select a node of type string....... A-17
XML-21021: node of type string does not support range operation string A-17
XML-21022: invalid event type: StNgcccccvvieveviiiiiiiiiiiccciccccc s A-17
XML-21023: prefix not allowed on nodes of type strifg.........ccoeeuevvirieieinircieiciiccicea A-17
XML-21024: import not allowed on nodes of type string.........c.ccocevvervvvrrrrvenerenennnes A-18
XML-21025: rename not allowed on nodes of type String.........ccccovvvvvviviiniiniiniiiinnns A-18
XML-21026: Unrepresentable character in node: stringccccovvvvviiiiniinnnnnnn, A-18
XML-21027: Namespace normalization error in node: SHingcccococvvvevervvvvevercnenenes A-18
XML-21997: function not supported on THICK DOM...........cccccvvviininnnniniinn A-18
XML-21998: system error occurred: SHINg ... A-18
XSL Transformation Error MESSAgEScccccueuiuiuiuiiimiieicieiiieicieieieieeeieeeeiereneseseeeneseeeeeseneeenees A-18
XML-22000: Error while parsing XSL file (Sti11g).ccccovirviivimiiiiiiniiiiiiiiiiieenines A-18
XML-22001: XSL Stylesheet does not belong to XSLT namespace.ccccervriruruernnes A-18
XML-22002: Error while processing include XSL file (String)........cccoevevevevervrvveverenenenes A-18
XML-22003: Unable to write to output stream (String).......ccoceevvvvrvivrireiiiniiiiniiiicicne A-18
XML-22004: Error while parsing input XML document (st7ing).........ccccceeuvviviviinirenennes A-19
XML-22005: Error while reading input XML stream (st7ing).cccoceveveveverrrerererererenenes A-19
XML-22006: Error while reading input XML URL (St7i71g). ..c.cevvvvvvviriviiiiniiiiiiciiiicicinn A-19
XML-22007: Error while reading input XML reader (Strif1g).ccccoeuvvvuvuvivirrviiiinninennes A-19
XML-22008: Namespace prefix string used but not declared.cccccceviinninnnne. A-19
XML-22009: Attribute string not found in sHINg.ccccevvvvviiiiniiicicc A-19
XML-22010: Element string not found in String.ccccceevvivvvvniinnniniiincinnne A-19
XML-22011: Cannot construct XML PI with content: st7ing.cccccovvvvvrrrvvennneenes A-19
XML-22012: Cannot construct XML comment with content: string.cccecevvvvennnnnn A-19
XML-22013: Error in @Xpression: SEFING.......cccveevvvveueiiniiieiiininieienccsiiesccssseessesnesesenee e A-19
XML-22014: Expecting node-set before relative location path...........ccccccccceeivincnnnne. A-19
XML-22015: Function string not found. ... A-19
XML-22016: Extension function namespace should start with string.c.cccceeeveinie. A-19

XXi

XXii

XML-22017: Literal expected in string function. Found string.cccccevvvvviiinnnnnnn A-19

XML-22018: Parse Error in string function. ..o A-19
XML-22019: Expected string instead Of sEFing.ccoovuvevuveverivvirriicrrceeeceeceeeeees A-19
XML-22020: Error in extension function arguments..............ccocoeeueiiiieieiniiceeiicieen, A-20
XML-22021: Error parsing external document: strifg..........ococoeueueiiiicieieicicicieeiccieeae A-20
XML-22022: Error while testing predicates. Not a nodeset type.cccccccecucvrecunnnnn. A-20
XML-22023: Literal Mismatch.cccoiiiiiiiiiiiii s A-20
XML-22024: Unknown multiply operator. ..o A-20
XML-22025: Expression error: EMpty string.........ccoovviiiiniiiiiniicccine, A-20
XML-22026: Unknown expression at EOF: st7ifg........cccccovvviiiiiiiiiiiiiicccc, A-20
XML-22027: Closing } not found in Attribute Value template..........ccccocoooriiiiiiinns, A-20
XML-22028: Expression value type string not recognized by string............cccecevevevunenne. A-20
XML-22029: Cannot transform child string in string..........ccceeeeiieiecniniiiiccenens A-20
XML-22030: Attribute value string not expected for string.ccovvvvivnviinnnnnnn A-20
XML-22031: Variable not defined: SHing.ccccovuruviririrrvriirccccceceeeeeeeees A-20
XML-22032: Found a single } outside expression in Attribute value template............... A-20
XML-22033: Token not recognized:!.........cccooviiiiiiiiriiiicc A-20
XML-22034: Namespace definition not found for prefix string...........ccceevvvvverernenenee A-20
XML-22035: Axis string Not fOUNdccceveieeiiiniiiiiiiiiii s A-20
XML-22036: Cannot convert string to String........ovvvvviiiiiniiieeiis A-21
XML-22037: Unsupported feature: SEring.cccoveverrreeeenrrrereerceeeeeeeeseeeeeeeseeeeas A-21
XML-22038: Expected Node-set in Path EXpression.c.cccccevvieiiiiniiiniiinnn A-21
XML-22039: Extension function error: Error invoking constructor for string................. A-21
XML-22040: Extension function error: Overloaded constructors for string A-21
XML-22041: Extension function error: Constructor not found for string...........ccccceccu.. A-21
XML-22042: Extension function error: Overloaded method string..........cccccevvvvvivinnnnnn A-21
XML-22043: Extension function error: Method not found string..........cccccoevvvevevrnenene. A-21
XML-22044: Extension function error: Error invoking string:stringevvenenns A-21
XML-22045: Extension function error: Class not found stringccccevvvviiiinnnnnnnn A-21
XML-22046: Apply import cannot be called when current template is null. A-21
XML-22047: Invalid instantiation of string in string context.........coovvvvvivviiiiininnnns A-21

XML-22048: The string element children must precede all other element children of an
string element. A-21

XML-22049: Template string invoked but not defined.cccccceeueiiviiiinnnninene A-21
XML-22050: Duplicate variable string definition..........c.cccovviivinininiiniiinns A-21

XML-22051: only a literal or a reference to a variable or parameter is allowed in id()
function when used as a pattern A-22

XML-22052: no sort key named as: string was definedccccocoeeiiiniiinninnnne A-22
XML-22053: cannot detect encoding in unparsed-text(), please specify...........cccoocvuvuenee A-22

XML-22054: no such xsl:function with namespace: string and local name: string was
defined A-22

XML-22055: range expression can only accept xs:integer data type, but not string....... A-22
XML-22056: exactly one of four group attributes must be present in xsl:for-each-group
A-22

XML-22057: string can only have string as children..........cccoooiiiin A-22
XML-22058: wrong child of XSLfUNCHONcceuiuiuiiiiiiiiiiiicccccccecceceeeens A-22
XML-22059: wrong child order of XsLfunction...........cccoevviviiiiniiiiiiins A-22
XML-22060: TERMINATE PROCESSING.......ccccoceiiiiiiiiiiiiiiiciceeseseeas A-22

XML-22061: teminate attribute in <xsl:message> can only be yes or no..........cccccc.cc..... A-22
XML-22062: string must have at least one string child............cccccovviiniiinin, A-22
XML-22063: no definition for character-map with gname string..........cccoceevevevvererenencne. A-22
XML-22064: cannot define character-map with the same name string and the same import
precedence A-22

XML-22065: at least one string must be defined under string..........cccccoevvviiiiiiinnne. A-23
XML-22066: if select attribute is present, string instructions sequence-constructor must be
empty A-23

XML-22067: if use attribute is present, string instructions sequence-constructor must be
empty A-23

XML-22068: only primary sort key is allowed to have the stable attribute..................... A-23
XML-22069: only string or string is allowed.cccoevvurviirirnriicrcecereeeeeeees A-23
XML-22101: DOMSource node as this type not supported.cccccoveeiiiiiiinnennnn A-23
XML-22103: DOMResult can not be this kind of node...........ccccceevviiiniiiiniinnnn, A-23
XML-22106: Invalid StreamSource - InputStream, Reader, and Systemld are null. A-23
XML-22107: Invalid SAXSource - InputSource is null...........ccccoovviviiiiiiiiiiinne A-23
XML-22108: Invalid Source - URL format is incorrect...........ccccoeeriiineiiiiiiiniennen, A-23
XML-22109: Internal error while reporting SAX events...........cccoevvvvnrrnnnnnncnccncnes A-23
XML-22110: Invalid StreamResult set in TransformerHandler...........ccccccoevviviiiiininnns A-23
XML-22111: Invalid Result set in TransformerHandler.cccccccoviniiiinnnnnnnnn, A-24
XML-22112: Namespace URI MiSSINg J.ccoceueuiuiiiiiiiiiiiiicceeeeceeeeeceeeeeeeeeeeees A-24
XML-22113: Namespace URI should start with {.......ccccooeviiiiiiii A-24

XML-22117: URL format has problems (null or bad format or missing 'href' or missing '=").
A-24

XML-22121: Could not get associated stylesheet. ... A-24
XML-22122: Invalid StreamResult - OutputStream, Writer, and Systemld are null...... A-24
XML-22900: An internal error condition OCCUITEd.c.coverviruerierieieieieeeeeiesee e A-24
XPath EITOr MESSAZES......c.cucuiuiiiiiiiieicicieicieieicieietetete ettt A-24
XML-23002: internal Xpath error.........ccccciiiiiiiiiiii s A-24
XML-23003: XPath 2.0 feature schema-element/schema-attribute not supported......... A-24
XML-23006: value does not match required typeccccccoceueucccciiiicnccicerceceee A-24
XML-23007: FOAR0001: division by Zero.........cccoovviiiviiiiiiiiiiiiiiiiiiiicscccnnes A-24
XML-23008: FOAR0002: numeric operation overflow /unflowccccccovvviiinnnnne A-24
XML-23009: FOCAQ001: Error in casting to decimalcccccoeeeiiiiiiceiicciccceee A-25
XML-23010: FOCAQ0002: invalid lexical valuec.ccoceverienieniinnininineneeieeeeeeeeens A-25
XML-23011: FOCAOQ003: input value too large for integerccccccevviviivviinnnnnnnes A-25
XML-23012: FOCAQ0004: Error in casting to integer..........ccccevvviiiiiniiiiiiniiccnine, A-25
XML-23013: FOCAQ0005: NaN supplied as float/double valueccccccoiviiiiniines A-25
XML-23014: FOCHO0001: invalid codepointccccccccuiuiiiiiiiiiiiiicciiiccceeees A-25
XML-23015: FOCHO0002: unsupported collationcccccceevvvirnninnnnrnrencnccnes A-25
XML-23016: FOCHO0003: unsupported normalization form...........ccooeevvviiiiiinnnnnns A-25
XML-23017: FOCHO0004: collation does not support collation unitscccceueueueunneee. A-25
XML-23018: FODCO0001: no context dOCUMENT.......c..ccvvueirieirieirieerieerieeeiee st A-25
XML-23019: FODCO0002: Error retrieving reSOUICEcovueuerevererererererereieiesereieenesenesesenenens A-25
XML-23020: FODCO0003: Error parsing contents of resource...........cccccceueveviveieiririnicenennnes A-26
XML-23021: FODCO0004: invalid argument to fn:collection()ccccccevueeerrrrrnrcnencnes A-26
XML-23022: FODT0001: overflow in date/time arithmetic.........c.cooovevviiviiviiiiiiiiiciens A-26
XML-23023: FODT0002: overflow in duration arithmeticcccceeveeiereecieenenenienieneienses A-26

xXiii

XXiv

XML-23024: FONCO0001: undefined context item..........cccccevvvveviviiiiiiiiiiicin, A-26
XML-23025: FONS0002: default namespace is defined.............cocoooeioiiiiiii A-26
XML-23026: FONS0003: no prefix defined for namespaceccccceccueueucccccrencnenenees A-26
XML-23027: FONS0004: no namespace found for prefiX ..o, A-26
XML-23028: FONS0005: base URI not defined in the static context.............cccccevuvirinnnnn A-26
XML-23029: FORG0001: invalid value for cast/constructorccccoeveiiiiiiniriinninns A-26
XML-23030: FORG0002: invalid argument to fn:resolve-uri()ccceeevvriiininrinennnes A-26
XML-23031: FORG0003: zero-or-one called with sequence containing more than one item...
A-27
XML-23032: FORG0004: fn:one-or-more called with sequence containing no items..... A-27
XML-23033: FORG0005: exactly-one called with sequence containing zero or more than
one item A-27
XML-23034: FORG0006: invalid argument typeooceueieioiceieiiicceeccie i A-27
XML-23035: FORG0007: invalid argument to aggregate function...........cccccccceueueueuennene. A-27
XML-23036: FORGO0008: both arguments to fn:dateTime have a specified timezone.... A-27
XML-23037: FORG0009: base uri argument to fn:resolve-uri is not an absolute URL.... A-27
XML-23038: FORX0001: invalid regular expression flags...........ccccccceeureriiccnnncnnnnnes A-27
XML-23039: FORX0002: invalid regular eXpressionccoeeeveiicieieiniciciesiecie e A-27
XML-23040: FORX0003: regular expression matches zero-length string......................... A-27
XML-23041: FORX0004: invalid replacement String...........cccccoceeueueuecueueeecrenceenenenennn A-28
XML-23042: FOTY0001: tyPe @ITOT ...ucuviiieiieieiiiicieieeie it A-28
XML-23043: FOTYO0011: context item is not a nodecccccevvvviviiiniiniiiiiiiinn, A-28
XML-23044: FOTY0012: items not comparable............cccccovvuiirnriiiiicrcccecceeeeees A-28
XML-23045: FOTY0013: type does not have equality definedc...cccooeeiriinnni A-28
XML-23046: FOTY0014: type eXCePption.......cccceeveveieiiiiieieiiicicieieieieie s A-28
XML-23047: FORTO0001: invalid number of parameters...........c.cccoceeeurureverrirererrerenernenene A-28
XML-23048: FOTY0002: type definition not foundccooeviiiiiniiniiiic A-28
XML-23049: FOTY0021: invalid node type........ccccooieiviiniiiniiiniiciiniiecnineccceeienes A-28
XML-23050: FOER0000: unidentified eI10rccoeivviiiiiniiniiiccecccna A-28
XML-23051: FODC0005: invalid argument to fn:doc..........ccooueeiieiiciiieicecc A-28
XML-23052: FODT0003: invalid timezone value...........ccccoirvniieiiiicciniccccenens A-29
XML Schema Validation Error MESSagesccccoeueueueuiucuiuciimiicmcicieeeieeeieeneneneieneneeneneneenenens A-29
XML-24000: INteINal @ITOTc.iiiiiriiiiiiiiiiciieieiee s A-29
XML-24001: attribute string not expected at line string, column string.........c..ococevuevennnes A-29
XML-24002: can not find element declaration Sfring.c.cccceeveveerrvneenrrsereeereenes A-29
XML-24003: context-determined element declaration string absent.ccccceevevevnennn. A-29
XML-24004: declaration for element string absent.cccooueveeiiiniiciiciiiieece A-29
XML-24005: element st7i11g NOt @SSESSEU.......vovvurureririiiriririceieieireee s A-29
XML-24006: element string laxly assessed............cooeueueiiriiiiiiiiieiiiccc A-29
XML-24007: missing attribute declaration stringin element stringccccooevevevruereinnes A-29
XML-24008: type absent for attribute stringcccooevvvvveiirncicrrcccccreceeees A-29
XML-24009: invalid attribute value stringcccccovvvvvveiiiniiiiiiicccc A-30
XML-24010: attribute value string and fixed value string not match..........ccoooeeeeeiinne. A-30
XML-24011: type of element st7ing is abStract.ccccceueueueucciiceiiciieeecceeeeeeeeees A-30
XML-24012: no children allowed for element string with empty content type A-30
XML-24013: element child string not allowed for simple contentccccoevvirinnnnnes A-30
XML-24014: characters string not allowed for element-only content............cccccccueueueeee. A-30
XML-24015: multiple ID attributes in element string at line string, column string......... A-30

XML-24016:
XML-24017:
XML-24018:
XML-24019:
XML-24020:
XML-24021:
XML-24022:
XML-24023:
XML-24024:
XML-24025:
XML-24026:
XML-24027:
XML-24028:
XML-24029:
XML-24030:
XML-24031:
XML-24032:
XML-24033:
XML-24034:
XML-24035:
XML-24036:
XML-24037:
XML-24038:
XML-24039:
XML-24040:
XML-24041:
XML-24042:
XML-24043:
XML-24044:
XML-24045
XML-24046:
XML-24047:
XML-24048:
XML-24049:
XML-24050:
XML-24051:
XML-24052:
XML-24053:
XML-24054:
XML-24055:
XML-24056:
XML-24057:
XML-24058:
XML-24059:
XML-24060:
XML-24061:
XML-24062:

invalid string value string at line string, column stringcccocoevviiennnen. A-30
invalid boolean value string at line string, column stringcccocoeevennee. A-30
invalid decimal value string at line string, column stringcccccceveueeee. A-30
invalid float value string at line string, column stringccccoevvvviiennnnn. A-31
invalid double value string at line string, column stringccccocovvvuennen. A-31
invalid duration string at line string, column string...........cccoveeveccivccnce. A-31
invalid date value string at line string, column string.........ccocoovvviiicnnnn. A-31
invalid dateTime value string at line string, column string...........c.ccoeeue.e. A-31
invalid time value string at line string, column Stringcceceveccvccceee. A-31
invalid gYearMonth value string at line string, column string A-31
invalid gYear value string at line string, column stringcccccoevvviecnnne. A-31
invalid gMonthDay value string at line string, column string..................... A-31
invalid gDay value string at line string, column stringcccccoeevvvvecnnnee. A-32
invalid gMonth value string at line string, column stringc.cceeeeueee. A-32
invalid hexBinary value string at line string, column stringcc........ A-32
invalid base64Binary value string at line string, column string................... A-32
invalid anyURI value string at line string, column string............ccccoeeeuece. A-32
invalid QName value string at line string, column stringcccceeeeueee. A-32
invalid NOTATION value string at line string, column string A-32
invalid normalizedString value string at line string, column string A-32
invalid token value string at line string, column Stringccccecvvencnne. A-32
invalid language value string at line string, column stringcccooeenee. A-32
invalid NMTOKEN value string at line string, column string A-33
invalid NMTOKENS value string at line string, column string................... A-33
invalid Name value string at line string, column string...........ccccoevvveennen. A-33
invalid NCName value string at line string, column stringccccc...... A-33
invalid ID value string at line string, column SHiNgGcccocevvevevciiccncnne. A-33
invalid IDREF value string at line string, column string............cccocovvvennen. A-33
invalid ENTITY value string at line string, column string...........c.cccoeveueee. A-33
: invalid ENTITIES value string at line string, column stringc........ A-33
invalid integer value string at line string, column string.........ccocoevvvenennen. A-33
invalid nonPositivelnteger value string at line string, column string......... A-33
invalid negativelnteger value SHingcccoiiiiiiinininciiicccececcees A-34
invalid long value string at line string, column stringccocoevvvviinnnen. A-34
invalid int value string at line string, column Sting.........ccccevevvvvirircnnne. A-34
invalid short value string at line string, column Stringccocevevevvrcnnne. A-34
invalid byte value string at line string, column string.........cccocoevviiicnnnnn. A-34
invalid nonNegativelnteger value string at line string, column string....... A-34
invalid unsignedLong value string at line string, column string................. A-34
invalid unsignedInt value string at line string, column string..................... A-34
invalid unsignedShort value string at line string, column string A-34
invalid unsignedByte value string at line string, column string.................. A-34
value string must be valid with respect to one member type A-35
element string not expected at line string, column stringccocoevevuenene. A-35
element st7i1g ADSTIAC.........cvvvviiiriiiii e A-35
element string not nillable ... A-35
no character or element children allowed for nil content string A-35

XXV

XXVi

XML-24063: nil element does not satisfy fixed value constraintccccccoeeeivrinnnnen. A-35
XML-24064: xsi:type not a QName at line string, column stingccccevvvevvivnininennnn A-35
XML-24065: xsi:type string not resolved to a type definitioncccccceeeeccvnncnnne. A-35
XML-24066: local type string not validly derived from the type of element string........ A-35
XML-24067: value string not in eNUMEration............ccccceeueiiiiieiiieiiiiiiinnes A-35
XML-24068: invalid facet st7ing fOr type SHiNgcoovuvuveriveverirreccereee s A-35
XML-24069: too many fraction digits in value string at line string, column string A-36
XML-24070: missing ID definition for ID reference string at line string, column string A-36
XML-24071: duplicate ID string at line string, column SHing.........cccvvveveevrrvevenerrenenes A-36
XML-24072: duplicate key sequUence Stringccccovveveiiniiiiiiieiiiiiiiiccceceeens A-36
XML-24073: target node set not equals to qualified node set for key string A-36
XML-24074: element member string in key sequence is nillable..........c.cccccccccceincnnnnnn A-36
XML-24075: missing key sequence for key reference stringccovvviivviviinnninnnns A-36
XML-24076: incorrect length of value stringccccccovvviiiiiiiiiiiiic A-36
XML-24077: value string greater than or equal to maxExclusive.........ccccccccccvvncnnnne A-36
XML-24078: value string greater than the maxInclusive..........cccooiiiiiiiiincns A-37
XML-24079: value length of string greater than maxLength ... A-37
XML-24080: value string smaller or equals to minExclusive ... A-37
XML-24081: value string smaller than minInclusive.........cccoooveiiiiiiiiiiiiiiin, A-37
XML-24082: value string shorter than minLength...........cccocooii A-37
XML-24083: wildcard particle in the content of element string not done........................ A-37
XML-24084: element particle string Not donecccoevvveveiiiiieiiiiiiiii A-37
XML-24085: model group string in the content of element string not done.................... A-37
XML-24086: invlid literal string with respect to pattern facet stringccccecevvenne A-37
XML-24087: undefined type SHINgcccccvviiiiiiiiiiiiiiiiiai A-37
XML-24088: undeclared attribute stringcccccoeveiivviiiiiiiiiii A-38
XML-24089: undeclared element Stringccccoveveverrrreerrrrrccee s A-38
XML-24090: undefined attribute roup stringccccovvvviviviinvnniiiicns A-38
XML-24091: undefined model group Strifngcccccevuvvviviiiiiniiiiiiiiiiccs A-38
XML-24092: undeclared notation SEFING.........ccoeuvuvuviveiirirriceiccreceee s A-38
XML-24093: too many digits in value string at line string, column string..............ccc...... A-38
Schema Representation Constraint Error Messages ... A-38
XML-24100: element string must belong to XML Schema namespace..........ccccccceueuneee. A-38
XML-24101: can not build schema from location stringccccevivvvniiiiininiiinnnns A-38
XML-24102: can not resolve schema by target namespace stringcccooeveveeeeerereinnes A-38
XML-24103: invalid annotation representation at line string, column string A-39
XML-24104: multiple annotations at line string, column string..........cccccevvvevvriinrninnnnn A-39
XML-24105: annotation must be the first element at line string, column string.............. A-39
XML-24106: attribute wildcard before attribute declaration at line string, column string
A-39
XML-24107: multiple attribute wildcard ..o A-39
XML-24108: default string and fixed string both presentc.ccocoeeviviiiniiinns A-39
XML-24109: default value string conflicts with attribute use stringXML-24109: default value
string conflicts with attribute use string A-39
XML-24110: missing name or ref attributeccoocvvviiiiiiiiii A-39
XML-24111: both name and ref presented in attribute declaration.............ccccceccueuennnee A-39
XML-24112: ref conflicits with form, type, or simpleType childccccccevvviinnnnncnes A-39
XML-24113: type attribute conflicts with simpleType child..........cccoecvviinininiiinnns A-40

XML-24114: intersecton of attribute wildcard is not expressible............ccccoevvinnninn A-40

XML-24115: circular attribute group reference string..........cccevvvvvvniiinnniininnnn, A-40
XML-24116: circular group reference NGccovvvrveererirrereerereeeeesereeeseeeseseeees A-40
XML-24117: base type string for complexContent is not complex type.........ccccceuvvevnene. A-40
XML-24118: simple content required in base type stringcccccvvvvvvvvnvninnnnnnn A-40
XML-24119: properties specified with element reference stringcccceevuvveveeueeennne. A-40

XML-24120: simpleType and complexType can not both present in element declaration
string A-40

XML-24121: imported namespace string must different from namespace string A-40
XML-24122: target namespace sting reqUiredccocovvvvvneinnrnnerrreceeeeaes A-41
XML-24123: namespace stringis different from expedted targetNamespace string....... A-41
XML-24124: targetNamespace string not expected in schemaccccoooiiii A-41
XML-24125: can not include schema fromstringcccoevvevevvvveinnnrrcrrreceeeeees A-41
XML-24126: included targetNamespace string must the same as string..........cccceevevnee. A-41

XML-24127: no-namespace schema can not include schema with target namespace string ...
A-41

XML-24128: itemType attribute conflicits with simpleType childccccccccceururennnnne A-41
XML-24129: prefix of qname string can not be resolved ..o A-41
XML-24130: redefined schema has different namespace. line string column string....... A-41

XML-24131: no-namespace schema can only redefine schema without targetNamespace.....
A-42

XML-24132: type derivation string must be restrictionccceeeeeieiiiiciiiinnen, A-42
XML-24132: type string must redefine itself at line string, column string...............c........ A-42
XML-24133: group string can have only one self reference in redefinition...................... A-42

XML-24134: self reference of group string must not have minOccurs or maxOccurs other
than 1 in redefinition A-42

XML-24135: redefined group stringis not a restriction of its orginal group.................... A-42
XML-24236: attribute group string can have only one self reference in redefinition..... A-42
XML-24136: redefined attribute group string must be a restriction of its orginal group
A-42

XML-24137: restriction must not have both base and simpleType child....................... A-42

XML-24138: simple type restriction must have either base attribute or simpleType child
A-43

XML-24139: neitehr itemType or simpleType child present for list...........ccceeverevernnnnnen. A-43
XML-24140: itemType and simpleType child can not both be present in list type........ A-43
XML-24141: circular union type is disallowed. ... A-43
XML-24142: facet string can not be specified more than once..........ccocoevvviivivvninnininns A-43
XML-24143: memberTypes and simpleType child can not both be absent in union..... A-43
XML-24144: facets can only used for restriction..........cocovuvevevervririirrrrecrrreceeeees A-43
Schema Component Constraint Error Messages...........coccoeueuiirieieiiicicieiicce e, A-43
XML-24201: duplicate attribute string declaration...........cccccceeviiiiiiniiiiiiiiine, A-43
XML-24202: more than one attributes with ID type not allowedc.ccccccccvurirircnnnnne A-44
XML-24203: invalid value constraint Strifng.........ccoevvvviniiiiiiiiiiiiccccs A-44
XML-24204: value constraint string not allowed for ID type........cccoocoeeininiciiiiiincennes A-44
XML-24205: fixed value string does not match string in attribute declaration A-44
XML-24206: value constraint must be fixed to match that in attribute declaration....... A-44
XML-24207: invalid xpath eXpression SHifngccccccevvuviiiiiiiviiiviniiirincreseeas A-44
XML-24208: invalid field Xpath st7ing.......ccovvviviveriiiirirccccrccee s A-44

XXVii

XXViii

XML-24209:
XML-24210:
XML-24211:
XML-24212:
XML-24213:
XML-24214:
XML-24215:
XML-24216:
XML-24217:
XML-24218:
XML-24219:
XML-24220:
XML-24221:
XML-24222:
XML-24223:
XML-24224:
XML-24225:
XML-24226:
XML-24227:
XML-24228:
XML-24229:
XML-24230:
XML-24231:
XML-24232:
XML-24233:
XML-24234:
XML-24235:
XML-24236:
XML-24237:
XML-24238:
XML-24239:
XML-24240:
XML-24241:
XML-24242:
XML-24243:
XML-24244:
XML-24245:
XML-24246:
XML-24247:
XML-24248:
XML-24249:
XML-24250:
XML-24251:
XML-24252:
XML-24253:
XML-24254:
XML-24256:

maxQOccurs in element string of All group mustbe O or1......cccccevvveieveinnns A-44
All group has to form a content type.cccoooeriiiiiiiii, A-44
All group has to form a content type.ccccevevevervrernnnnnnrrrreerenne A-44
type string does not allow facet string...........ccovvvvivnninnnininnnine, A-45
wildcard intersection is not exprssible ... A-45
base type not allow string derivation............cccooeeociiiiccciicceecceenes A-45
complex type string is not a derivation of type stringc.cccocoevvviinennnn. A-45
must specify a particle in extened content type ..o, A-45
content type string conflicts with base type's content type string............... A-45
inconsistent local element declarations st7ingccocovvvvivninniininnn. A-45
element string is not valid substitutable for element string A-45
itemType string can NOt be LStcocoveviiiriniiirii e A-45
cricular union string not allowed ..o A-46
ambiguous Particles SHiNg.......o.o et A-46
invalid particle eXteNSION.cccvviviriririrrrr e A-46
invalid particle restrictionccocoeviiiiiniii A-46
simple type string does not allowed restriction ..o A-46
invalid derivation from base type SHINgGccccovioiviivinnciiniiiccceeeees A-46
atomic type can not restrict list SEI1g ..o A-46
base type can not be ur-type in restriction..........ccccoooeiiiiiiiil A-46
base type of list must be list Or Ur-typecccoevvveuveviviriirniiirrccrcene A-46
base type of union must be union or ur-typeccccocoevveeiiiiiiiiiiinic, A-46
element default stringrequires mixed content to be emptiable................... A-46
element default string requires mixed content or simple content A-46
element default string must be valid to its content type..........cccoovvvvvennne. A-47
wrong field cardinality for keyref string ..., A-47
complex type can only extend simple type String.........cooeveeviievnciirncnnn. A-47
cricular type definition String........cccvvvivviviiiniiis A-47
base type string must be complex type.........ccoceueiiiiiiiiicee e, A-47
attribute string not allowed in base typeccccovvvvvnrnncinnnneee, A-47
required attribute string not in restriction...........cccevvviiiiiiiniiine, A-47
no correspoonding attribue wildcard in bas type stringccccocoevevennnn. A-47
base type string must have simple content or emptiable............cccccceueuee. A-47
base type string must have empty content or emptiableccoceevrnniis A-48
enumeration facet required for NOTATION.........ccccocoviniiininiiiieeine A-48
invalid value string in €NUMETationccoceeirieiiiriininicciicccceeeee A-48
default value stringis element type invalid...........cccoovvininnnnnne, A-48
invalid substitutionGroup string, type invalid..........c.cccocooennininnnnnn, A-48
ID type does not allow value constraint stFing...........coceeeeeveinereecnccinnccnn. A-48
fractionDigits stringgreater than totalDigits Stringccoeovvviiiviiininnnnn. A-48
length facet can not be specified with minLength or maxLength A-48
length string not the same as length in base type's.......ccccccocevvvvvvnrcnence. A-48
maxExclusive greater than its originalcccocoeiiiiiiiii, A-49
minInclusive greater than or equal to maxExclusivec.ccocoeviininincnnncn. A-49
maxLength is greater than that in base type........cccccccceeieviiinnnnnnne, A-49
circular group stringdisallowed..........cccocoviiiinnninnn A-49
minExclusive must be less than or equal to maxExclusive A-49

XML-24257: minExclusive stringmust be less than maxInclusivecccccceveivineinnnn. A-49
XML-24258: invalid minEXCIUSIVE St1iNGccccovvvviiiiiiiiiiiiiiiiiiiiccs A-49
XML-24259: invalid minEXCIUSIVE SEFINGccovvvveeririiiiiiriricceccreceeee s A-49
XML-24260: invalid minEXCIUSIVe StFiNGccovveviviiiiiiiiiciiiiciciccccc A-49
XML-24261: invalid minEXCIUSIVE St1iNGccccovviviiiiiiiiiiiiiiiiiiiicccs A-49
XML-24262: minInclusive string must not be greater than maxInclusive A-50
XML-24263: Can not specify both minInclusive and minExclusive.........ccccccoeuernnnneen. A-50
XML-24264: invalid minINclusive string ... A-50
XML-24265: invalid minINclusive SEFNGcocevveviiirririciiirccceeeeeeee s A-50
XML-24267: invalid minINclusive string ... A-50
XML-24268: invalid minINclusive string ... A-50
XML-24269: invalid minLength Srifgcccovevvviiirriiccreccecreeee s A-50
XML-24270: invalid minLength st7ingccccocovviiiiiiiiiiic A-50
XML-24271: can not declare xmlns attribute............ccccccceiiiiiiiiiiii A-50
XML-24272: no xsi for targetNamMeSPaCe.cccceueueueiemcmiiceieieiceeeeee e A-51
XML-24272: minOccurs is greater than maxOccurs..........cccveeeiiieiiiiiiiiiiiie A-51
XML-24281: maxOccurs must greater than or equal to L........ccccoceviiiiiniiiinnininnn, A-51
XML-24282: incorrect Notation properties...........cooevviiinininiiiinniccecens A-51
XML-24283: particle's range is not valid restriction............ccceceevviiiiiniiiniiiine, A-51
XML-24284: sequence group is not valid derivation of choice group.........c.ccccoevueunnnes A-51
XML-24285: element string is not valid restriction of element st#ingccccceevveveence. A-51
XML-24286: element string is not valid restriction of wildcardcccccoevviiiinnnnn A-51
XML-24287: group is not valid restriction of wildcardcccocoeviiiniiiiniinn, A-51
XML-24288: group any is not valid restrictioncccccoceeecceiieicececccceeceees A-51
XML-24289: invalid restriction of all or sequence groupcccceeevvvereveininireriiieenennnnns A-51
XML-24290: wildcard is not valid restriction.........cccooviiiiiiiiiiiiicce, A-52
XML-24291: sequence is not a valid restriction of allc.cccccoeiiiiiiiiiiiicee A-52
XML-24292: duplicate component definitions String...........ccoevvvviiiivviniininiiiiinns A-52
XML-24293: Incorrect simple type definition propertiesccccooooriiiiiine A-52
XML-24294: wildcard is not a subset of itS SUPET.......ccccoeueueueirviviriiirrccrrrerccaes A-52
XML-24295: totalDigits stringis greater than string in base type........cccoooreiincicnn A-52
XML-24296: whiteSpace string can not restrict base type's stringc.cccooeevvvvcrrereinnes A-52
XML-24297: circular substitution group stringcccceevvevrvvernnrrrerreeseeeeeees A-52
XSQL Server Pages EXror MESSAZESc.cvurueieiiiiieieieiiecic e A-52
XML-25001: Cannot locate requested XSQL file. Check the name.ccccccceuvuricunnnn A-52
XML-25002: Cannot acquire database connection from pool: st7ingcccecevevevererunne. A-52
XML-25003: Failed to find config file string in CLASSPATH.cccccevvviiiiviniinininnns A-53
XML-25004: Could not acquire a database connection named: stringccccoeeueuuene. A-53
XML-25005: XSQL page is not well-formed..........cccccoeeeiiiiiiiiiiiicccccceeeceeees A-53
XML-25006: XSLT stylesheet is not well-formed: string.......c.cccovvviiivviniiiiniiiiiinns A-53
XML-25007: Cannot acquire a database connection to process page.ccccooevevruennnes A-53
XML-25008: Cannot find XSLT Stylesheet: StFing........c.cccovvuvevvvereinnrrrcrrreceeenes A-53
XML-25009: Missing arguments on command linec.ccceeeeiieiicneieiiineenen, A-53
XML-25010: Error creating: string\nUsing standard output.ccccooeveiviriiinnnnn A-53
XML-25011: Error processing XSLT stylesheet: St7ingcccccovvvevvivrvvnrrnnicrene A-53
XML-25012: Cannot Read XSQL Pagecccccoeuiiiiiiiiiiiiiiiciciiccceeeeeeee s A-53
XML-25013: XSQL Page URI is null; check exact case of file name.cccccceuvurneunnnnn A-53

XXiX

XML-25014: Resulting page is an empty document or had multiple document elements.
A-53
XML-25015: Error inserting XML Document............cccoovvvvveiiieiniiiciniiccccecccne, A-53
XML-25016: Error parsing posted XML Documentccccccccueueuriciinnnincnnnineneeen A-53
XML-25017: Unexpected Error Occurred ... A-53
XML-25018: Unexpected Error Occurred processing stylesheet string.............cccceueeec A-54
XML-25019: Unexpected Error Occurred reading stylesheet stringcccccevuveverunence. A-54
XML-25020: Config file string is not well-formed.ccccoveiiiiiiiiiii A-54
XML-25021: Serializer string is not defined in XSQL configuration file A-54
XML-25022: Cannot load serializer class S{riNgccovvveveeurirreiiieeercecreeeeeeeeeeeees A-54
XML-25023: Class string is not an XSQL Serializer ..., A-54
XML-25024: Attempted to get response Writer after getting OutputStream................. A-54
XML-25025: Attempted to get response OutputStream after getting Writer.................. A-54
XML-25026: Stylesheet URL references an untrusted server...........ccocceeeeeieerinniinenenen, A-54
XML-25027: Failed to load string class for built-in xsql:string action.cccceueveuennene. A-54
XML-25028: Error reading string. Check case of the name.cccccccoeveiiiinnncnene. A-54
XML-25029: Cannot load error handler class string........ccccovevviiiiiiiiniiciiicnn A-54
XML-25030: Class string is not an XSQL ErrorHandler............cccccocoviiviniiniiinnnnnnn, A-54
XML-25100: You must supply a string attribute.cccccveeeuevnriiiciivveeicreceeeeees A-54
XML-25101: Fatal error in Stylesheet POOLccccoiiiiiiiiiiiiiiiiciiiccccc A-54
XML-25102: Error instantiating class Strifg ..o A-54
XML-25103: Unable to load class SEFINGccccueuereveveririrricccicrecceeeeeeeeeeeeeeeeeeas A-55
XML-25104: Class string is not an XSQLActionHandler ..., A-55
XML-25105: XML returned from PLSQL agent was not well-formedccccccoco... A-55
XML-25106: Invalid URL SEFING.....c.ccovuiiiriiiririiiiiiiiiicicsce s A-55
XML-25107: Error loading URL Stcccvviiiviiiiiiiiiiieiiiicicicicccece s A-55
XML-25108: XML Document string is not well-formedcccccoeiiiniiiiinininnnn, A-55
XML-25109: XML Document returned from database is not well-formed...................... A-55
XML-25110: XML Document in parameter string is not well-formed...........cccccouvurrvnnnes A-55
XML-25111: Problem including strifngcccccevueiivininiiiiiiiiiicinnnsns A-55
XML-25112: Error reading parameter Valuec.ccceucueuiicieninineeiiienrrcreeeese s A-55
XML-25113: Error loading XSL transform stringccccccceeeveniiniinniiiccisinens A-55
XML-25114: Parameter string has a null valueccccccceiiiiiiiiiiiiii, A-55
XML-25115: No posted document t0 ProCesscccueueueueueuememeueueiemeremeeeeeieneneieeeeeeeneeenes A-55
XML-25116: No query statement suppliedcccocoeeiiiniiiiniiiiec A-55
XML-25117: No PL/SQL function name supplied.........ccccccouviiiiiiiiiiiiiniiinen, A-55
XML-25118: Stylesheet URL references an untrusted server............cccccceeeuccucecucucncnnne. A-55
XML-25119: You must supply either the string or string attribute.ccccceevvvivennnnn. A-56
XML-25120: You selected fewer than the expected string values.ccccooevriirninnnnes A-56
XML-25121: Cannot use 'xpath’' to set multiple parameters.cccccccoccccceccencennen. A-56
XML-25122: Query must be supplied to set multiple parameters..........c.c.cccevuevirrrennnnnn. A-56
XML-25123: Error reading string. Check case of the name.ccccccevviiiviiininnnnnnn A-56
XML-25124: Error printing additional error information.ccccccevcceccccicecenenen. A-56
XML-25125: Only one of (string) attributes is allowed.ccoovvviviniiiiiiiiins A-56
XML-25126: One of (string) attributes must be supplied.ccccooviiiiiiiiiiiinnnn A-56
XML Pipeline EITor MESSAZESc.cceuiuiuiuiiiiiiiiicieieieicieieieieieeeeieeeeeie e eaenas A-56
XML-30000: Error ignored in string: SENGcceeveveieievereiiinieieiciecieiececeeee s A-56
XML-30001: Error occured in execution of Process ... A-56

XML-30002: Only XML type(s) string allowed.cccccovvvviiiiiniiiiiiiiicci A-56

XML-30003: Error creating/writing to output string..........ccocovueeiviiccieeiniiceccciee A-56
XML-30004: Error creating base Url SHimgcccovuvivivririierirrccececeeeeeeeeeees A-56
XML-30005: Error reading input St7ingcccovveveviviiiiiiniiiiiiiiiccceccsces A-57
XML-30006: Error in processing pipedoc Error elementccccoooiiiiiiiiiinas A-57
XML-30007: Error converting output to xml type required by dependent process....... A-57
XML-30008: A valid parameter target is requiredccccceeveeviiiiiiiii A-57
XML-30009: Error piping output t0 input......cccceeiiiiiiiiicc A-57
XML-30010: Process definition element string needs to be definedccccceuvveevenenee. A-57
XML-30011: ContentHandler not available...........ccccoiiiiiiiiiiiiicen A-57
XML-30012: Pipeline components are not compatiblecccoooooiiiiiiie, A-57
XML-30013: Process with output label string not found............ccocceveeivniinvninnnnes A-57
XML-30014: Pipeline is not complete, missing output/outparam label called string.... A-57
XML-30016: Unable to instantiate class..........ccccoveiiviiiniiiiiiiiiiiic A-57
XML-30017: Target is up-to-date, pipeline not executedcccccccoeeccciccccicccnnnee. A-58
Java API for XML Binding (JAXB) Error Messages...........c.cocovuvivinininiinininiiniiiinccccnene A-58

XML-32202: a problem was encountered because multiple <schemaBindings> were
defined. A-58

XML-32203: a problem was encountered because multiple <class> name annotations were
defined on node string. A-58

XML-32204: a problem was encountered because the name in <class> declaration
contained a package name prefix string which was not allowed. A-58

XML-32205: a problem was encountered because the property customization was not
specified correctly on node string. A-58

XML-32206: a problem was encountered because the javaType customization was not
specified correctly on node string. A-58

XML-32207: a problem was encountered in declaring the baseType customization on the
node string. A-58

XML-32208: a problem was encountered because multiple baseType customizations were
declared on the node string. A-59

XML-32209: a problem was encountered because multiple javaType customizations were
declared on the node string. A-59

XML-32210: a problem was encountered because invalid value was specified on
customization of string. A-59

XML-32211: a problem was encountered because incorrect <schemaBindings>
customization was specified. A-59

XML-32212: the <class> customization did not support specifiying the implementation
class using implClass declaration. The implClass declaration specified on node string was
ignored. A-59

XML-32213: the <globalBindings> customization did not support specifiying user specific
class that implements java.util.List. The collectionType declaration was ignored. A-59

TXU EXTOT IMESSAZES........oonvmiiiiiiiiiiciricitctc et A-59
General TXU EITOr MESSAZESccueuiuimiuririiiiiciieicieieiceeeeeeeiee e A-59
TXU-000T: FAtal EITOrcuiciiciieieiieieieeiest ettt e e sreestesreesaesraessessaessesssensessenns A-59
TXU-0002: EITOT..ccutiiiieeeiieciieete et eete et esteesteesteesteesteessaeesbeesssassseessseanseeseessseasaesssesnssesseensses A-59
TXU-0003: WaITUNE ..ot A-60

DLEF EITOT MESSAZES.cuviiveieniniietetciitetetetc ettt eae s A-60
TXU-0100: parameter string in query string not found............ccccevvvviniinnninnnnn, A-60

TXU-0101: incompatible attributes col and constant coexist at string in query string... A-60

XXXi

XXXii

TXU-0102: node string not found...........cccoeviiiiiiiiiiii A-60

TXU-0103: element string lacks content............ccccceevviiiviiiniiiniiiiniicccc A-60
TXU-0104: element string with SQL string lacks col or constant attribute....................... A-60
TXU-0105: SQL exception string while processing SQL stringcccovveviiviinnnnnnn A-60
TXU-0106: no data for column string selected by SQL stringcccccovvvvivvvviinnnnnnne A-60
TXU-0107: datatype string not supportedc.cccccceecuineeiicereeeeeeeceeeeeeeeeees A-60
TXU-0108: missing maxsize attribute for column string ..o, A-60
TXU-0109: a text length of string for string exceeds the allowed maximum of string.... A-61
TXU-0110: undeclared column st7ing in TOW SEFING ...ccovevveveeereririreeiiieeereeeeeeeeeeeeeeees A-61
TXU-0111: lacking column data for string in TOW String........ccccevvvvveveiiiiiiiiiiccan, A-61
TXU-0112: undeclared query parameter string for column stringccccceveeeenencnes A-61
TXU-0113: incompatible attribute string with a query on column string...........ccccee..... A-61
TXU-0114: DLF parse error (string) on line string, character string in string A-61
TXU-0115: The specified date string string has an invalid format...........cccccevviinnnnnnn A-61
TransX Informational MESSAZES.........cceueueueuiuimimiieiiiiiiieieieieieieeieie et senenes A-61
TXU-0200: duplicate TOW at SEFINGcvveveveieiiiiiciiicicicicicce s A-61
TransX EITOr MESSAZES........ceeueiiiiiiiiiieiieietee s A-61
TXU-0300: document st7in1g NOt fOUNd.......c.ceeviuiueiririiiiiiiciicecereeee s A-61
TXU-0301: file string could not be read...........cccveveiiiiiiiiiiiiiiiii A-62
TXU-0302: archive string not found...........cccccevvivniniiiiniiii A-62
TXU-0303: schema string not found in SHiNgcovvvveverveiiivnicrceeeceeeees A-62
TXU-0304: archive path for string not found ..., A-62
TXU-0305: no database connection on string call for string ... A-62
TXU-0306: null tablename given; access denied............cccocvuvurvrniiiinrnninircccreeene A-62
TXU-0307: lookup-keys could not be determined string............cccecevvvvvvvviiiiiinennnnnnn A-62
TXU-0308: binary file string not found...........ccooii A-62
TXU-0309: a file size of string exceeds the allowed maximum of 2,000 bytes................. A-62
ASSETHON MESSAZESeoeevvteeiiietete s A-62
TXU-0400: missing SQL statement element On String.........ccocovueueiiiiicieeicicicieciccie e A-62
TXU-0401: MisSing NOAE SEHINGccovvvevieieririiiicicirececeee s A-63
TXU-0402: invalid flag Stringccoveveiuiiiicieicieicice s A-63
TXU-0403: internal €ITOr SEFING........covvviiiviiiriiiiiiiiiicicrcc s A-63
TXU-0404: unexpected EXCEPHON SIFITIGvovvveerererieiiiiiciricceeeeeeeeeee s A-63
Usage Description MESSAZESc.oueueuiiiiieiiiiiicicctcc ettt A-63
TXU-0500: XML data transfer Utility........cccocvvvvniiinniiiiiiniicncnncncs A-63
TXU-0501: Parameters are as fOlloWS:.........ccocoveveiiiiiniiiiiciicc s A-63
TXU-0502: JDBC cONNect STrNGc.cveviieiicieiicieie s A-63
TXU-0503: You can omit the connect string information through the '@ symbol. A-63
TXU-0504: Then jdbc:oracle:thin:@ will be supplied.ccccocovvviiiiiniiiiccee A-63
TXU-0505: database USeIName............ccceuiveiiieiiiiiiieieiieiicee s A-63
TXU-0506: database password ..o A-63
TXU-0507: data file name or URL........cccooiiiiiiiiiiiiiicccs e A-63
TXU-0508: OPtioNS:....ccueviviuiiiiiiiiiieieiiteiteteietee e A-63
TXU-0509: update eXisting TOWS.........cccceeuriiiiiiiiiiiiiiiiiiie s A-64
TXU-0510: raise exception if a row is already exiSting........ccccoceeevevrivrverrrrrnninrcnes A-64
TXU-0511: print data in the predefined format............cccocoeviviiiniiiiiiiiis A-64
TXU-0512: save data in the predefined format.........c.c.cooooeiiiiiii A-64

TXU-0513: print the XML t0 10adcooimiiiiii e A-64

TXU-0514: print the tree for updatecooiiiiiiiiiiiii A-64
TXU-0515: omit validation.........ccooevviiiiiiiiiiiic e A-64
TXU-0516: validate the data format and exit without loading..........c.ccccooeiiiininin, A-64
TXU-0517: preserve WhiteSpace..........ccccccueviiiiiiiiiiiiiiiiiiiiic s A-64
TXU-0518: EXAMIPLES:.....oviiiiiiiiiiiicicicieicieicieeeteie ettt aaees A-64
XSU EXTOr IMESSAZES......cocuevviniiiiietctc ettt sttt A-64
Keywords and Syntax for Error Messages ... A-64
XSUK-0001: DOCUMENToooiiiiiiiiiii s A-64
XSUK-0002: ROWSET ...t A-64
XSUK-0003: ROW.....ooiiiiiiiiiiiiiiicii s A-64
XSUK-0004: ERROR......cooviiiiiiininiiiiiici et A-65
XSUK-0005: IUIN ..ottt A-65
XSUK-0006: TEEIMN ...ttt A-65
Generic Error MESSagES.cciiiiiiiiiiiiiiiiiiiiiici s A-65
XSUE-0000: Internal Error -- Exception Caught stingccccocevvvvvviiniiiininiicnn, A-65
XSUE-0001: Internal EXTor — StFiNgccccovvviviiiiiiiiiiiiiiiiicicicccs s A-65

XSUE-0002: string is not a scalar column. The row id attribute can only get values from
scalar columns. A-65

XSUE-0003: string is not a valid column name.cccocoevveeieninniciee A-65

XSUE-0004: This object has been closed. If you would like the object not to be closed
implicitly between calls, see the string method. A-65

XSUE-0005: The row-set enclosing tag and the row enclosing tag are both omitted;
consequently, the result can consist of at most one row which contains exactly one column
which is not marked to be an XML attribute. A-65

XSUE-0006: The row enclosing tag or the row-set enclosing tag is ommitted; consequently
to get a well formed XML document, the result can only consist of a single row with
multiple columns or multiple rows with exactly one column which is not marked to be an
XML attribute. A-65

XSUE-0007: Parsing of the sqlname failed -- invalid arguments.cccccoovriiini A-65
XSUE-0008: Character string is not allowed in an XML tag name...........ccccoevevrrnccncnee A-65
XSUE-0009: this method is not supported by string class. Please use string instead. A-66
XSUE-0010: The number of bind names does not equal the number of bind values..... A-66

XSUE-0011: The number of bind values does not match the number of binds in the SQL
statement. A-66

XSUE-0012: Bind name identifier string does not exist in the sql query........ccccoecevvvnne. A-66
XSUE-0013: The bind identifier has to be of non-zero length.ccccccevvviinnnnn A-66
XSUE-0014: Root node supplied is ULc.ccooviiiiiiiriiircrcrreeereeeeees A-66
XSUE-0015: Invalid LOB locator specified.cccoconeviiiiiiiiiiiiiccccccn A-66
XSUE-0016: File string does Not eXit.cccccueurueieiiiiiiiiiniiiiiiiciciiciicsceees A-66

XSUE-0017: Can not create oracle.sql. STRUCT object of a type other than
oracle.sql.STRUCT (i.e. ADT). A-66

XSUE-0018: Null is not a valid DocumentHandler.............cccccocevviviiniinniiiiiiine, A-66
XSUE-0019: Null and empty string are not valid namespace aliases..........c.c.cccocevernnees A-66
XSUE-0020: to use this method you will have to override it in your subclass. A-66

XSUE-0021: You are using an old version of the gss library; thus, sql-xml name escaping is
not supported. A-66

XSUE-0022: cannot create XMLType object from opaque base type: string.................... A-66

XXXxiii

QUETY EIrOr MESSAGESovviiiiiiicii s A-66

XSUE-0100: Invalid context handle specified.c.c.coooriioiiiiii A-67

XSUE-0101: In the FIRST row of the resultset there is a nested cursor whose parent cursor
is empty; when this condition occurs we are unable to generate a dtd. A-67

XSUE-0102: string is not a valid IANA encoding.ccccoeueviiieieiniiieieiccce A-67
XSUE-0103: The resultset is a "TYPE_FORWARD_ONLY" (non-scrollable); consequently,
xsu can not reposition the read point. Furthermore, since the result set has been passed to
the xsu by the caller, the xsu can not recreate the resultset. A-67

XSUE-0104: input character is invalid for well-formed XML: string........cccccccevuvvverunenne. A-67

DML Error MESSAZESocvcviviiiiiieieieieieietete bbb A-67

XSUE-0200: The XML element tag string does not match the name of any of the
columns/attributes of the target database object. A-67

XSUE-0201: NULL is an invalid column name.............cocoovvviimnnininiiininiinceeennes A-67
XSUE-0202: Column string, specified to be a key column, does not not exits in table string...
A-67

XSUE-0203: Column string, specified as column to be updated, does not exist in the table
string. A-67

XSUE-0204: Invalid REF element - string - attribute string missing.ccccceceeveverurencnee A-67
XSUE-0206: Must specify key values before calling update routine. Use the string function.
A-67

XSUE-0207: UpdateXML: No columns to update. The XML document must contain some
non-key columns to update. A-67

XSUE-0208: The key column array must be non empty..........cccceeevvvrvvvnvvvnnnnenenes A-68
XSUE-0209: The key column array must be non empty.........ccceooiiieiiiieiniiccans A-68
XSUE-0210: No rows to modify -- the row enclosing tag missing. Specify the correct row
enclosing tag. A-68

XSUE-0211: string encountered during processing ROW element string in the XML
document. A-68

XSUE-0212: string XML rows were successfully processed...........cccoeovvviniinininininnnnns A-68
XSUE-0213: All prior XML row changes were rolled back............cccccccevviiiiiniinnnnnn A-68
Pieces Of EITOT MESSAZEScucvuumiuuiiiiiiiicieieicieieieteieie ettt seees A-68
XSUE-0300: INOTE ..ottt ettt ettt ettt eb bbbttt e bt e bt eateat et s b sbenbesaens A-68
XSUE-0301: Exception string caught: St7ing........cccceeviiviviriiiiiiiiiiiniiiicinrincrcscceeas A-68
XSUE-0302: COIUIMINvveeieiieiieiieiieiestetesiet et etestesteaeseesassaesessassessessessessessessessassesesseesensessessens A-68
XSUE-0303: TMAIMEc.veeuvieeieiieeeerieeeeteetesteeteteesesseessesseessesseessesseessesssessesseessesssessesseessesssessenses A-68
XSUE-0303: INVALIAveovievieiieiieeiieteteee ettt et st ete et eve e e te e e eveessesseeasesseensesseessesseensenseens A-68
XSUE-0304: XM] OCUIMENT ...ccveeuireiiiiriiieieieieteieeeteeteteeteseesessessessessessessessessessesessessessessens A-68
XSUE-0305: tempPlatecccoeviviiiiiiiiiiiiiiiiiciiicccc s A-68

Glossary

Index

XXXiV

Audience

Preface

This Preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

Oracle XML Developer’s Kit Programmer's Guide is intended for application developers
interested in learning how the various language components of the Oracle XML
Developer's Kit (XDK) can work together to generate and store XML data in a database
or in a document outside the database. Examples and sample applications are
introduced where possible.

To use this document, you need familiarity with XML and a third-generation
programming language such as Java, C, or C++.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

XXXV

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (ITTY) access to Oracle Support Services

within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

XXXVi

For more information, see these Oracle resources:
» Oracle XML DB Developer’s Guide
» Oracle Database XML C API Reference
» Oracle Database XML C++ API Reference
Oracle Database XML Java API Reference
» Oracle Streams Advanced Queuing User’s Guide and Reference
m http://www.oracle.com/technology/tech/xml/

Many of the examples in this documentation are provided with your software in the
following directories:

s SORACLE_HOME/xdk/demo/java/

(] SORACLE_HOME/xdk/demo/c/

s SORACLE_HOME/xdk/java/sample/
m SORACLE_HOME/rdbms/demo

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

For additional information about XML, see:

» The following appendixes in Oracle XML DB Developer’s Guide, which are intended
as general introductions to XML technologies:

— XML Schema Primer

— XPath and Namespace Primer
— XSLT Primer

» Oracle Database 10g XML & SQL: Design, Build, & Manage XML Applications in Java,
C, C++, & PL/SQL by Mark Scardina, Ben Chang, and Jinyu Wang, Oracle Press,
http://www.osborne.com/oracle/

= WROX publications, especially XML Design and Implementation by Paul Spencer,
which covers XML, XSL, and development.

» Building Oracle XML Applications by Steve Muench, O'Reilly,
http://www.oreilly.com/catalog/orxmlapp/

m The XML Bible, http://www.ibiblio.org/xml/books/biblegold/

» XML, Java, and the Future of the Web by Jon Bosak, Sun Microsystems,
http://www.ibiblio.org/bosak/xml/why/xmlapps.htm

» XML for the Absolute Beginner by Mark Johnson, JavaWorld,
http://www.javaworld.com/jw-04-1999/jw-04-xml_p.html

s XML And Databases by Ronald Bourret,
http://www.rpbourret.com/xml/XMLAndDatabases.htm

» XML Specifications by the World Wide Web Consortium (W3C),
http://www.w3.org/XML/

= XML.com, a broad collection of XML resources and commentary,
http://www.xml.com/

s Annotated XML Specification by Tim Bray, XML . com,
http://www.xml.com/axml/testaxml.htm

= XML.org, hosted by OASIS as a resource to developers of purpose-built XML
languages, http://xml.org/

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

= Conventions in Text
= Conventions in Code Examples

s Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appearina index-organized table.
glossary, or both.

Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis.

Ensure that the recovery catalog and target
database do not reside on the same disk.

XXXVii

Convention

Meaning

Example

UPPERCASE
monospace

(fixed-width)
font

lowercase
monospace
(fixed-width)
font

lowercase
italic
monospace

(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executable programs, filenames, directory
names, and sample user-supplied
elements. Such elements include computer
and database names, net service names
and connect identifiers, user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font represents
placeholders or variables.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_ STATS.GENERATE_STATS
procedure.

Enter sglplus to start SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the
/diskl/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

You can specify the parallel clause.

Run old_release.SQL where old_release
refers to the release you installed prior to

upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text

as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example
[] Anything enclosed in brackets is optional. = DECIMAL (digits [, precision])
{1} Braces are used for grouping items. {ENABLE | DISABLE}
| A vertical bar represents a choice of two {ENABLE | DISABLE}
options. [COMPRESS | NOCOMPRESS]
Ellipsis points mean repetition in syntax CREATE TABLE ... AS subquery;
descriptions.
In addition, ellipsis points can mean an SELECT coll, col2, ... , coln FROM
omission in code examples or text. employees;
Other symbols You must use symbols other than brackets acctbal NUMBER(11,2);
([1), braces ({ }), vertical bars (1), and acct CONSTANT NUMBER (4) := 3;
ellipsis points (...) exactly as shown.
Ttalics Italicized text indicates placeholders or CONNECT SYSTEM/system password

XXXViii

variables for which you must supply
particular values.

DB_NAME = database_name

Convention Meaning Example
UPPERCASE Uppercase typeface indicates elements SELECT last_name, employee_id FROM
supplied by the system. We show these employees;
terms in uppercase in order to distinguish ggr,EcT * FROM USER_TABLES;
them fr(?m terms you define. Upless terms ppop TABLE hr.employees;
appear in brackets, enter them in the order
and with the spelling shown. Because these
terms are not case sensitive, you can use
them in either UPPERCASE or lowercase.
lowercase Lowercase typeface indicates user-defined SELECT last_name, employee_id FROM
programmatic elements, such as names of employees;
tables, columns, or files. sqlplus hr/hr
Note: Some programmatic elements usea ~ CREATE USER mjones IDENTIFIED BY ty3MU9;
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.
Convention Meaning Example

Choose Start >
menu item

File and directory
names

C:\>

Special characters

HOME_NAME

How to start a program.

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (1), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the filename
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (*). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (') do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

To start the Database Configuration Assistant,
choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

c:\winnt"\"system32 is the same as
CAWINNT\SYSTEM32

C:\oracle\oradata>

C:\>exp HR/HR TABLES=employees
QUERY=\"WHERE job_id='SA_REP' and
salary<8000\"

C:\> net start OracleHOME_NAMETNSListener

XXXiX

Convention Meaning Example

ORACLE_HOME In releases prior to Oracle8i release 8.1.3, Go to the
and when you installed Oracle components, all ORACLE_BASE\ ORACLE_HOME\rdbms\admin
ORACLE_BASE subdirectories were located under a top directory.

level ORACLE_HOME directory. The default

for Windows NT was C: \orant.

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that
by default is
C:\oracle\product\10.1.0.If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\product\10.1.0\db_n,
where n is the latest Oracle home number.
The Oracle home directory is located
directly under ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Installation Guide
for Microsoft Windows (32-Bit) for additional
information about OFA compliances and
for information about installing Oracle
products in non-OFA compliant
directories.

xl

What's New in the XDK?

What's New contains this topic:
= Features Introduced in Oracle XML Developer's Kit 10g Release 2 (10.2)
= Features Introduced in Oracle XML Developer's Kit 10g Release 1 (10.1)

Features Introduced in Oracle XML Developer's Kit 10g Release 2 (10.2)

The new XDK features for the second release of Oracle Database 10g.

Globalization Development Kit (GDK) 2.0
Four . jar files are now required to provide Globalization support in XDK.

See Also: Chapter 2, "Getting Started with Java XDK
Components"

Easy XML Application Development Using JAXB XCustomization

JAXB now supports customization. There are several new sample programs in the
XDK demo directory that deal with customization.

See Also:
= "JAXB Customization" on page 6-4
» Table 6-2, " JAXB Class Generator Demos"

XPATH 2.0 and XQuery 1.0 Functions and Operators Support in Java
This feature conforms to the external W3C standard.

See Also: "Standards and Specifications" on page 4-1

SOAP APIs for C and C++

See Also:
s Chapter 18, "Using SOAP with the C XDK"
» Chapter 26, "Using SOAP with the C++ XDK"

Features Introduced in Oracle XML Developer's Kit 10g Release 1 (10.1)

This section describes features introduced in the first release of Oracle Database 10g.

xli

xlii

JAXB Class Generator

The JAXB compiler generates the interfaces and the implementation classes
corresponding to the XML schema. The JAXB class generator, which is based on the
Java Specification Request (JSR) recommendation for JAXB, is to be used for new
applications. The Oracle class generator for Java is deprecated and replaced by the
JSR-31 implementation of XML Data Binding (JAXB). The runtime will be supported,
so that the Java classes generated in older releases will continue to work.

See Also: Chapter 6, "Using the JAXB Class Generator"

Unified API for C and C++

The functions in the unified APIs work in both XDK and XML DB and replace the C
and C++ XDK functions of previous releases.

See Also: Chapter 15, "Using the XML Parser for C", Chapter 20,
"Overview of the Unified C++ Interfaces", and related chapters

XDK C/C++ Components Change

Previously, the globalization support data environment variable setting was ORA_
NLS33. It has now been changed to ORA_NLS10.

Pipeline Definition Language
The W3C Note for the Pipeline Definition Language is implemented in the XDK for
Java.

See Also: Chapter 7, "Using the XML Pipeline Processor for Java"

XSLT Compiler and XSLT Virtual Machine (XVM)

For improved performance there are new interfaces for the XSLT processor for C and
C++.

See Also: "XVM Processor" on page 16-1.

XSQL Pages Publishing Framework Updates

The following list highlights the key new features added to the XSQL Pages publishing
framework. You can now perform the following actions:

= Easily Work with Multi-Valued Parameters

s Bind Multi-Valued Parameters as Collections in SQL and PL/SQL

s Detect Action Handler Errors and React More Easily to Them

= Conditionally Execute Actions or Include Content

s Use JDBC Datasources from Your Servlet Container

s Provide Custom XSQL Page Request Logging

s Provide Custom XSQL Page Error Handling

= Override the Name of the XSQL Configuration File

The XSQL Servlet processor has the following new features in10g Release 1 (10.1):

= Support for Multi-Valued Parameters: This allows users to work with parameters
whose values are arrays of strings. The most common scenario where
multi-valued parameters occur is when a user submits an HTML form containing
multiple occurrences of input controls that share the same name.

Conditionally Execute Actions or Include Content with xsql: if-param: The
new <xsql:if-param> action enables you to conditionally include the elements
and actions that are nested inside it if some condition is true.

New Commit="No" Flag on Actions That Performed an Implicit Commit: The
<xsgl:delete-request, <xsgl:insert-request>,
<xsgl:insert-request>, and <xsqgl:insert-parameter> action elements
each take a new optional commit attribute to control whether the action does an
implicit commit or not.

Optionally Set an Error Parameter on Any Built-in Action: It is often convenient to
know whether an action encountered a non-fatal error during its execution.

Use Your Servlet Container's DataSource Implementation: As an alternative to
defining your named connections in the XSQLConfig.xml file, you can now se
the data sources available through your servlet container's implementation of
JDBC data sources.

Provides Custom XSQLErrorHandler Implementation: A new interface is

introduced in release 1.1. oracle.xml .xsql . XSQLErrorHandler allows
developers to achieve a programmatic control of how errors are reported to

customize the treatment of the errors.

Provides Custom XSQLLogger Implementation: Two new interfaces are
introduced in 10g Release 1 (10.1): oracle.xml.xsqgl.XSQLLoggerFactory
and oracle.xml.xsqgl.XSQLLogger allow developers to log XSQL page
requests.

You can override the Default Name of the XSQLConfig.xml file: You can easily
provide different configuration files for test and production environments. For
example, 10g Release 1 (10.1) introduces two ways to override the file name.

— By setting the Java System property xsql.config
- By defining a servlet initialization parameter xsql .config

Support for Apache FOP 0.20.3: If you need to render PDF output from XSQL
pages, this release supports working with the 0.20.3 release candidate of Apache
FOP.

Set Preserve Whitespace Config Option: It is now possible to control whether or
not the XSQL Page Processor uses the XML parser to parse XSQL page templates
and XSLT stylesheets with whitespace-preserving mode.

See Also: Chapter 11, "Using the XSQL Pages Publishing
Framework"

SOAP Documentation Improvements
This chapter includes new sections as well as an example of a SOAP project.

See Also: Chapter 13, "Using SOAP with the Java XDK"

New XML JavaBeans
The following new JavaBeans were added:

XSDValidator, which encapsulates the
oracle.xml.parser.schema.XSDValidator class and adds capabilities for
validating a DOM tree.

XMLCompress, which encapsulates XML compression functionality.

xliii

xliv

= XMLDBAccess, which is an extension of DBAccess JavaBean to support the
XMLType column in which XML documents are stored in an Oracle database table.

See Also: Chapter 8, "Using XDK JavaBeans"

Changes in this Manual

The following PL/SQL chapters have been moved to the Oracle XML DB Developer’s
Guide:

s XML Parser for PL/SQL

s XSLT Processor for PL/SQL

s XML Schema Processor for PL/SQL

Upgrades to the XDK Components

Specifications of the levels of the components in this release are described in "XML
Standards Supported by the XDK" on page 29-1.

Java XDK Components Changes

» The Java XDK components in this release have several fixes for J2EE conformance
and XML 1.0 Conformance Test Suite. Some of the changes resulted in change in
behavior with respect to previous release. These changes include the following:

— The default value of preserve whitespace
[XMLParser.setPreserveWhitespace ()] is now dependent on the
presence of a DTD. If a DTD is present, the default is false, else it is true.
Earlier the default was always false.

- getPrefix(), getNamespaceURI (), and getLocalName () return null
instead of """ (empty string), when not present in the element or attribute, or if
the node was created using DOM 1.0 methods.

» The DBMS_XMLPARSER, DBMS_XMLDOM and DBMS_XSLPROCESSOR packages
replace the PL/SQL wrapper for parsing and transformation.

s JAXP 1.2 supports XML schema validation.

s XMLSAXSerializer provides support to handle the SAX output serialization.

1

Introduction to Oracle XML Developer's Kit

This chapter contains the following topics:

s Overview of Oracle XML Developer's Kit (XDK)

= XDK Components

s XML Document Generation with the XDK Components
= Development Tools and Frameworks for the XDK

» Installing the XDK

Overview of Oracle XML Developer's Kit (XDK)

Oracle Oracle XML Developer's Kit (XDK) is a versatile set of components that
enables you to build and deploy C, C++, and Java software programs that process
XML. You can assemble these components into an XML application that serves your
business needs.

Note: Customers using Oracle XDK with PL/SQL and migrating
from Oracle Database Release 8.1 or 9.2 are strongly encouraged to
use AL32UTEFS as the database character set. Otherwise, issues can
arise during PL/SQL processing of XML data that contains escaped
entities.

Oracle XDK provides the foundation for the Oracle XML solution. The XDK supports
Oracle XML DB, which is a set of technologies used for storage and processing of
XML in the database. You can use the XDK in conjunction with Oracle XML DB to
build applications that run in Oracle Database. You can also use the XDK
independently of XML DB.

The Oracle XDK is fully supported by Oracle Corporation and comes with a
commercial redistribution license. The standard installation of Oracle Database
includes the XDK.

Table 1-1 describes the XDK components, specifies which programming languages are
supported, and directs you to section that describes how to use the components.

Introduction to Oracle XML Developer's Kit 1-1

Overview of Oracle XML Developer's Kit (XDK)

Table 1-1 Overview of XDK Components
Component Description Lang. Refer To
XML Parser Creates and parses XML with industry Java, C, = Chapter 3, "Using the XML
standard DOM and SAX interfaces. C++ Parser for Java"
= Chapter 15, "Using the XML
Parser for C"
s Chapter 21, "Using the XML
Parser for C++"
XML Compressor Enables binary compression and Java "Compressing XML" on page 3-34
decompression of XML documents. The
compressor is built into the XML parser
for Java.
Java API for XML Enables you to use SAX, DOM, XML Java "Parsing XML with JAXP" on
Processing (JAXP) Schema processor, XSLT processors, or page 3-29
alternative processors, from your Java
program.
XSLT Processor Transforms XML into other text-based Java, C, = Chapter 4, "Using the XSLT
formats such as HTML. C++ Processor for Java"
s Chapter 16, "Using the XSLT
and XVM Processors for C"
s Chapter 22, "Using the XSLT
Processor for C++"
XML Schema Processor ~ Validates schemas, allowing use of Java, C, s Chapter 5, "Using the Schema
simple and complex XML datatypes. C++ Processor for Java"
s Chapter 17, "Using the XML
Schema Processor for C"
s Chapter 23, "Using the XML
Schema Processor for C++"
XML Class Generator Generates Java or C++ classes from Java, C++ Chapter 6, "Using the JAXB Class
DTDs or XML schemas so that you can Generator" and Chapter 25,
send XML data from Web forms or "Using the XML Class Generator
applications. The Java implementation for C++"
supports Java Architecture for XML
Binding (JAXB).
XML Pipeline Processor ~Applies XML processes specified ina Java Chapter 7, "Using the XML
declarative XML Pipeline document. Pipeline Processor for Java"
XML JavaBeans Provides a set of bean encapsulations of Java Chapter 8, "Using XDK
XDK components for ease of use of JavaBeans"
Integrated Development Environment
(IDE), Java Server Pages (JSP), and
applets.
XML SQL Utility (XSU) Generates XML documents, DIDs, and Java, Chapter 9, "Using the XML SQL
Schemas from SQL queries. Mapsany ~ PL/SQL Utility (XSU)"
SQL query result to XML and vice
versa. The XSU Java classes are
mirrored by PL/SQL packages.
TransX Utility Loads translated seed data and Java Chapter 10, "Using the TransX

messages into the database using XML.

Utility"

1-2 Oracle XML Developer's Kit Programmer's Guide

XDK Components

Table 1-1 (Cont.) Overview of XDK Components

Component Description Lang. Refer To

XSQL servlet Combines XML, SQL, and XSLT in the Java Chapter 11, "Using the XSQL
server to deliver dynamic Web content. Pages Publishing Framework"

Oracle SOAP Server Provides a lightweight SOAP Java Chapter 13, "Using SOAP with the
messaging protocol for sending and Java XDK"

receiving requests and responses across
the Internet.

XSLT Virtual Machine Provides a high-performance XSLT C,C++ "XVM Processor" on page 16-1
XVM) transformation engine that supports
compiled stylesheets.
See Also:

s Chapter 29, "XDK Standards" to learn about XDK support for
XML-related standards

= "XDK Components" on page 1-3 for fuller descriptions of the
components listed in Table 1-1

XDK Components

You can use the XDK components to perform various types of XML processing. For
example, you can develop programs that do the following;:

= Parse XML
= Validate XML against a DTD or XML schema

s Transform an XML document into another XML document by applying an XSLT
stylesheet

= Generate Java and C++ classes from input XML schemas and DTDs

Figure 1-1 illustrates a hypothetical XML processor that performs the preceding tasks.

Figure 1-1 Sample XML Processor

> XML —_], Compressed
Compressor — | XML
XML [_oow |
Documents
— XML XML XSLT —)S(SII h
p— T Schema > SAX 4— _— | Stylesheet
Parser Validator A Proc+essor p—
— | xmL > ——s Transformed
——| Schema e | — | XML
Java or C++ Application
JAXB or CH++ OF | p—
—el)| C++ Class | Java r— | —
Generator Classes —
XML
Output

Introduction to Oracle XML Developer's Kit 1-3

XDK Components

XML Parsers

The XDK contains a number of components in addition to those illustrated in
Figure 1-1 that you can utilize in your programs. This section describes the following
XDK components:

s XML Parsers

s XSLT Processors

s XML Schema Processors

= XML Class Generators

= XSQL Pages Publishing Framework
= XML Pipeline Processor

s XDKJavaBeans

s Oracle XML SQL Utility (XSU)

s TransX Utility

= Soap Services

s XSLT Virtual Machine (XVM)

An XML parser is a processor that reads an XML document and determines the
structure and properties of the data. It breaks the data into parts and provides them to
other components.

An XML processor can programmatically access the parsed XML data with the
following APlIs:

= Use a SAX interface to serially access the data element by element. You can register
event handlers with a SAX parser and invoke callback methods when certain
events are encountered.

s Use DOM APIs to represent the XML document as an in-memory tree and
manipulate or navigate it.

The XDK includes an XML parser for Java, C, and C++. Each parser includes support
for both DOM and SAX APIs.

The XML parser for Java supports version 1.2 of JAXP, which is a standard API that
enables use of DOM, SAX, XML Schema, and XSLT independently of a processor
implementation. Thus, you can change the implementation of XML processors without
impacting your programs.

The XML compressor is integrated into the XML parser for Java. It provides
element-level XML compression and decompression with DOM and SAX interfaces.
The compressor will compress XML documents without losing the structural and
hierarchical information of the DOM tree. After parsing an XML document, you can
serialize it with DOM or SAX to a binary stream and then reconstruct it later.

You can use the compressor to reduce the size of XML message payloads, thereby
increasing throughput. When used within applications as the internal XML document
access, it significantly reduces memory usage while maintaining fast access.

Figure 1-2 illustrates the functionality of the XDK parsers for Java, C, and C++.

1-4 Oracle XML Developer's Kit Programmer's Guide

XDK Components

Figure 1-2 The XML Parsers for Java, C, and C++

XML
document
or DTD

Parsers

XML Parser for Java DOM / SAX for Java | 4===| Java Application

|
—>
XML Parser for C++ |[m==pp-| DOM/SAX for C++ | P C++ Application
—>

XML Parser for C DOM / SAX for C) C Application

See Also:

s Chapter 3, "Using the XML Parser for Java"
s Chapter 15, "Using the XML Parser for C"

» Chapter 21, "Using the XML Parser for C++"

XSLT Processors

eXtensible Stylesheet Language Transformation (XSLT) is a stylesheet language that
enables processors to transform one XML document into another XML document. An
XSLT document is a stylesheet that contains template rules that govern the
transformation.

The Oracle XSLT processor fully supports the W3C XSL Transformations 1.0
recommendation. The processor also implements also implements the current working
drafts of the XSLT and XPath 2.0 standards. It enables standards-based transformation
of XML information inside and outside the database on any operating system.

The Oracle XML parsers include an integrated XSLT processor for transforming XML
data by means of XSLT stylesheets. By using the XSLT processor, you can transform
XML documents from XML to XML, to XHTML, or almost any other text format.

See Also:
s "Using the XSLT Processor for Java: Overview" on page 4-3.

= Specifications and other information are found on the W3C site
athttp://www.w3.0rg/Style/XSL

XML Schema Processors

The XML Schema language was created by the W3C to describe the content and
structure of XML documents in XML, thus improving on DTDs. An XML schema
contains rules that define validity for an XML application. Unlike a DTD, an XML
schema is itself written in XML.

One of the principal advantages of an XML schema over a DTD is that a schema can
specify rules for the content of elements and attributes. An XML schema specifies a set
of built-in datatypes, for example, string, float, and date. Users can derive their own
datatypes from the built-in datatypes. For example, the schema can restrict dates to
those after the year 2000 or specify a list of legal values.

The Oracle XDK includes an XML Schema processor for Java, C, and C++.

Introduction to Oracle XML Developer's Kit 1-5

XDK Components

See Also:

s Chapter 5, "Using the Schema Processor for Java"

s Chapter 17, "Using the XML Schema Processor for C"

s Chapter 23, "Using the XML Schema Processor for C++"

XML Class Generators

An XML class generator is a software program that accepts a parsed XML schema or
DTD as input and generates Java or C++ source class files as output. The XDK
includes both the JAXB class generator and the C++ class generator.

JAXB is a Java API and set of tools that map to and from XML data and Java objects.
Because JAXB presents an XML document to a Java program in a Java format, you can
write programs that process XML data without having to use a SAX parser or write
callback methods. Each object derives from an instance of the schema component in
the input document. JAXB does not directly support DTDs, but you can convert a DTD
to an XML schema that is usable by JAXB. The XML class generator for C++ supports
both DTDs and XML Schemas.

For an example of how to utilize JAXB, you can write a Java program that uses
generated Java classes to build XML documents gradually. Suppose that you write an
XML schema for use by a human resources department and a Java program that
responds to users who change their personal data. The program can use JAXB to
construct an XML confirmation document in a piecemeal fashion, which an XSLT
processor can transform into XHTML and deliver to a browser.

Figure 1-3 Oracle JAXB Class Generator

—Pp | XML Parser for Java

XML XML
Schema Schema

v E 1

Oracle JAXB Jo = -
Class Generator [~ Jo —> Java Application ==

Je I
XML
Document

Java classes based
on XML Schema
(one class per element)

See Also:
= Chapter 6, "Using the JAXB Class Generator"
s Chapter 25, "Using the XML Class Generator for C++"

XML Pipeline Processor

The XML Pipeline Definition Language is an XML vocabulary for describing the
processing relationships between XML resources. A document that is an instance of
the pipeline language, that is, that defines the relationship between processes, is a
pipeline document. For example, the document can specify that the program should
first validate an input XML document and then, if it is valid, transform it.

1-6 Oracle XML Developer's Kit Programmer's Guide

XDK Components

Oracle XML Pipeline processor conforms to the XML Pipeline Definition Language 1.0
standard. The processor can take an input XML pipeline document and execute the
pipeline processes according to the derived dependencies. The pipeline processor
helps Java developers by replacing custom Java code with a simple declarative XML
syntax for building XML processing applications.

See Also: Chapter 7, "Using the XML Pipeline Processor for Java"

XDK JavaBeans

JavaBeans is a Java API for developing reusable software components that can be
manipulated visually in a builder tool. A JavaBean is a Java object that conforms to this
API. The Oracle XDK JavaBeans are a collection of visual and non-visual beans that are
useful in a variety of XML-enabled Java programs or applets. Table 1-2 summarizes
the XDK JavaBeans.

Table 1-2 Summary of XDK JavaBeans

JavaBean Description
DOMBuilder Builds a DOM Tree from an XML document. This bean is nonvisual.

XSLTransformer Accepts an XML file, applies the transformation specified by an input
XSLT stylesheet and creates the resulting output file. This bean is

nonvisual.
DBAccess Maintains CLOB tables that contain multiple XML and text documents.
XMLDBAccess Extends the DBAccess bean to support the XMLType column, in which
XML documents are stored in an Oracle Database table.
XMLDiff Compares two XML DOM trees.
XMLCompress Encapsulates the XML compression functionality.
XSDValidator Encapsulates the oracle.xml .parser.schema.XSDvValidator class

and adds capabilities for validating a DOM tree.

See Also: Chapter 8, "Using XDK JavaBeans"

Oracle XML SQL Utility (XSU)

XSU is a set of Java class libraries that you can use to perform the following tasks:

» Automatically and dynamically render the results of arbitrary SQL queries into
canonical XML. XSU supports queries over richly-structured, user-defined object
types and object views, including XMLType. When XSU transforms relational data
into XML, the resulting XML document has the following structure:

- Columns are mapped to top-level elements.
— Scalar values are mapped to elements with text-only content.

- Object types are mapped to elements with attributes appearing as
sub-elements.

- Collections are mapped to lists of elements.

s Load data from an XML document into an existing database schema or view.

Note: XSU also has a PL/SQL implementation. The
DBMS_XMLQuery and DBMS_XMLSave PL/SQL packages reflect the
functions in the OracleXMLQuery and OracleXMLSave Java classes.

Introduction to Oracle XML Developer's Kit 1-7

XDK Components

TransX Utility

Figure 14 illustrates how XSU processes SQL queries and returns the results as an
XML document.

Figure 1-4 XSU Processes SQL Queries and Returns the Result as XML

ciiihep| XML-SQL Utiity [

---- for Java

SQL or Object XML Document of
Queries Query Results as a
string or DOM tree

Store and retrieve
XML documents
in the database

Handling or Representing an XML Document
XSU can generate an XML document in any of the following ways:

= A string representation of the XML document. Use this representation if you are
returning the XML document to a requester.

= Anin-memory DOM tree. Use this representation if you are operating on the XML
programmatically, for example, transforming it with the XSLT processor by using
DOM methods to search or modify the XML.

= A series of SAX events. You can use this functionality when retrieving XML,
especially large documents or result sets.

Using XSU with an XML Class Generator

You can use XSU to generate an XML schema based on the relational schema of the
underlying table or view that you are querying. You can use the generated XML
schema as input to the JAXB class generator the C++ class generator. You can then
write code that uses the generated classes to create the infrastructure behind a
Web-based form. Based on this infrastructure, the form can capture user data and
create an XML document compatible with the database schema. A program can write
the XML directly to the corresponding table or object view without further processing.

See Also: Chapter 9, "Using the XML SQL Utility (XSU)"

The Oracle TransX utility is a data transfer utility that enables you to populate a
database with multilingual XML data. It uses a simple data format that is intuitive for
both developers and translators and uses a validation capability that is less error-prone
than previous techniques.

How is the TransX utility different from XSU? TransX utility is an application of XSU
that loads translated seed data and messages into a database schema. If you have data
to be populated into a database in multiple languages, then the utility provides the
functionality that you would otherwise need to develop with XSU.

1-8 Oracle XML Developer's Kit Programmer's Guide

XDK Components

See Also: Chapter 10, "Using the TransX Utility"

XSQL Pages Publishing Framework

The XSQL pages publishing framework (XSQL servlet) is a server component that
processes an XSQL file, which is an XML file with a specific structure and grammar,
and produces dynamic XML documents from one or more SQL queries of data objects.
Figure 1-5 shows you can invoke the XSQL servlet.

Figure 1-5 XSQL Pages Publishing Framework

XML-formatted
SQL queries

in Oracle

Servlet running
Database 10g

Java Web
Server XSQL Servlet
’ XML parser
with XSLT X'V'L_I_SOL
= processor utility
o .H| Browser
i — I — = -
A N N . -
— N e
—_ U .
User -
—] Query result
—— | transformed Database
——| by XSL
stylesheet

The XSQL servlet uses the Oracle XML parser to process the XSQL file, passing XSLT
processing statements to its internal processor while passing parameters and SQL
statements between the tags to XSU. Results from those queries are received as
XML-formatted text or a JDBC ResultSet object. If necessary, you can further
transform the query results by using the built-in XSLT processor.

One example of an XSQL servlet is a page that contains a query of flight schedules for
an airline with a bind variable for the airport name. The user can pass an airport name
as a parameter in a web form. The servlet binds the parameter value in its database
query and transforms the output XML into HTML for display in a browser.

See Also: Chapter 11, "Using the XSQL Pages Publishing
Framework"

Soap Services
Simple Object Access Protocol (SOAP) is a platform-independent messaging protocol

that enables programs to access services, objects, and servers. Oracle SOAP Services is
published and executed through the Web and provides the standard XML message
format for all programs. With SOAP Services, you can use the XDK to develop
messaging, RPC, and Web service programs with XML standards.

See Also: =

s Chapter 13, "Using SOAP with the Java XDK"

s Chapter 18, "Using SOAP with the C XDK"

s Chapter 26, "Using SOAP with the C++ XDK"

Introduction to Oracle XML Developer's Kit 1-9

XML Document Generation with the XDK Components

XSLT Virtual Machine (XVM)

The XVM for C/C++ is the software implementation of a CPU designed to run
compiled XSLT code. To run this code, you need to compile XSLT stylesheets into byte
code that the XVM engine understands. Figure 1-6 illustrates how the XVM processes
XML and XSL.

Figure 1-6 XSLT Virtual Machine

XSL
p— — XSLT

p— Compiler

XML l _XML

— ST

—F Virtual HTML

—F |—> wirtual e[HTML]
WML

The XDK includes an XSLT compiler that is compliant with the XSLT 1.0 standard. The
compilation can occur at runtime or be stored for runtime retrieval. Applications
perform transformations more quickly with higher throughput because the stylesheet
does not need to be parsed and the templates are applied based on an index lookup
instead of an XML operation.

See Also: "XVM Processor" on page 16-1

XML Document Generation with the XDK Components

The XDK enables you to map the structure of an XML document to a relational
schema. You can use the XDK to establish a two-way path to an Oracle database in
which your program creates XML documents from tables and inserts XML-tagged
data into tables. Each XDK programming language supports the development of
programs that generate XML documents from relational data.

This section contains the following topics:
s XML Document Generation with Java
s XML Document Generation with C

s XML Document Generation with C++

XML Document Generation with Java

As shown in Figure 1-7, you can execute a SQL query against the database in three
different ways. Table 1-3 describes the alternatives.

Table 1-3 Generating XML in Java

Technology Label in Figure 1-7 Description

XSQL Servlet A Includes XSU and the XML parser
XSU B Includes XML parser

JDBC C Sends output data to the XML parser

1-10 Oracle XML Developer's Kit Programmer's Guide

XML Document Generation with the XDK Components

Figure 1-7 Sample XML Processor Built with Java XDK Components

Browser /
Application

XML, HTML, Text

O saL query
> XSQL Servlet
Nl el e A A 1 XML Document
Utility SliSEIEEl —] with or without
——| aDTDor
A — | XML Schema
e . XML SQL Utility Dom or String —.Q
XML ch?aéz Checks for
Parser XML Document from Generator errors
LOB / XML Type I
Creates Java
Query In Data Out Stream » [XML Dom or Sax e source files
< Parser| - Parsed DTD — |
objects :
Ol | osc A . Parsed HTML JavaBeans | [egreted It
1
XML Parser = —
is within user f—
Object- application — _|G .
Relational XSLT XSLT APl is
data DTD or p in the XML
3= Oracle text XML rocessor Parser
|__ | —_ Schema |
S— e v & —
Oracle database — —
XML documents stored: — XSL
S e a0s Formatted Stylesheet

- As data distributed
untagged across tables

- Via views that combine
the documents and data

and customized
XML Document

Regardless of how your software program generates the XML from the database,

Figure 1-7 illustrates possible further processing that your program can perform on
the XML document. Table 1-4 describes some of the components that you can use to
perform this additional processing.

Table 1-4 Additional Document Processing with the Java XDK

Technology | Label in Figure 1-7 | Description

JAXB D Generates Java class files that correspond to an input
XML Schema

JavaBeans E Can compare an XML document with another XML
document

XSLT F Transforms the XML document into XHTML with an
XSLT stylesheet

Introduction to Oracle XML Developer's Kit

1-11

XML Document Gener

ation with the XDK Components

XML Document

Generation with C

Figure 1-8 illustrates the Oracle XDK C language components that you can use to
generate XML documents from relational data. The XDK C components are listed in

Table 1-1.

Figure 1-8 Generating XML Documents with XDK C Components

Browser /
Application

— |«
(] |3

-

SQL
Query

—)

Obiject
Relational

A 4 |xw
—— | XML Document
—— | with or without
— | aDTD or XML
Schema
— XSLT APl is
XSLT in the XML
XML Document from LOB / XMLType Processor Parser
]
Stream » [XML DOM or Sax v k —
L Parser| . Parsed DTD |— —
OCl or objects — —
Pro*C/C++ 4 PasedHTML | —
' XSL
, . Formatted Stylesheet
XML Parser is and customized
within the user p— XML Document
application j— I

DTD or

data

Oracle
|| o3 Tout XML
| — Schema
|

v LOBs

Oracle database

XML documents stored:

- As single object with tags
in CLOB or BLOB

- As data distributed
untagged across tables

- Via views that combine
the documents and data

As illustrated in Figure 1-8, you can use the XDK to develop a C program that

processes an XML document as follows:

1. Send SQL queries to the database by the Oracle Call Interface (OCI) or the
Pro*C/C++ Precompiler. The program must leverage the XML DB XML view
functionality.

2. Process the resulting XML data with the XML parser or from the CLOB as an XML

document.

3. Transform the document with the XSLT processor, send it to an XML-enabled
browser, or send it for further processing to a software program.

XML Document Generation with C++

Figure 1-9 shows the Oracle XDK C++ components that you can use to generate XML

documents. The XDK C++ components are listed in Table 1-1.

1-12 Oracle XML Developer's Kit Programmer's Guide

Development Tools and Frameworks for the XDK

Figure 1-9 Generating XML Documents Using XDK C++ Components

Browser /
Application
I—‘ <
— |«
A A XML
———— —], XML Document
——| with or without
——| aDTD or XML
Schema
—
Class Checks for

Generator | errors

I—|
Creates C++
source files
—|

XSLT XSLT APl is
in the XML
XML Document from LOB Processor Parser
. —
Stream DOM or Sax v
XML —_
80'- | Type | . Parsed DTD |— —
uery OCCl or objects — e
| B+ C/Crs 4 PasedHTML | —
' XSL
) . Formatted Stylesheet
XML Parser is and customized
within the user p— XML Document
Object application p— I
Relational
data DTD or

Oracle

I_ Text XML Schema
N =

v LOBs
Oracle database

XML documents stored:

- As single object with tags
in CLOB or BLOB

- As data distributed
untagged across tables

- Via views that combine
the documents and data

As illustrated in Figure 1-9, you can use the XDK to develop a C program that

processes an XML document as follows:

1. Send SQL queries to the database by the Oracle Call Interface (OCI) or the
Pro*C/C++ Precompiler.

2. Process the resulting XML data with the XML parser or from the CLOB as an XML
document.

3. Transform the document with the XSLT processor, send it to an XML-enabled
browser, or send it for further processing to a software program.

Development Tools and Frameworks for the XDK

Figure 1-10 illustrates some of the tools and frameworks that you can use to develop
software programs that use XDK components. For example, you can use Oracle
JDeveloper to write a Java client that can query the database, generate XML, and
perform additional processing. An employee can then use this program to send a
query to an Oracle database. The program can transfer XML documents to XML-based

Introduction to Oracle XML Developer's Kit 1-13

Development Tools and Frameworks for the XDK

business solutions for data exchange with other users, content and data management,
and so forth.

Figure 1-10 XDK Tools and Frameworks

I Browser /

——J |Application Oracle Development Tools Business Data Exchange with
XML (data stored in or out of
database in relational tables
or LOBs)

B2B or B2C
?QL Query XML Messaging
Using AQ
IDAP
Web
Interface
v XML E XML Gateway
Documents = =
Programming APlIs: = =
Support for e — =
Java, C, and C++ — =] =
v A =
JDBC, OClI, = LV Content and Document
OCCl, or management with XML
Pro*C/C++ (XML documents stored
in or out of database)
Middle Tier:
- Oracle Application Server
- Apache Server
v - Java-enabled web server
Object
Relational
data Oracle To search and retrieve
|| < Text XML documents stored
| in CLOBS
XML Doc in CLOB or XMLType XML Application in
Oracle Database tmh%glz;t?iz?se or
XML Data stored:
- In relational tables
- As XML documents in XMLType
This section describes some of the tools and frameworks that you can use in e-business
development:
= Oracle JDeveloper
s User Interface XML (UIX)
= Oracle Reports
s Oracle XML Gateway
s Oracle Data Provider for .NET
Oracle JDeveloper

Oracle JDeveloper is a J2EE development environment with end-to-end support for
developing, debugging, and deploying e-business applications. JDeveloper provides a
comprehensive set of integrated tools that support the complete development life

1-14 Oracle XML Developer's Kit Programmer's Guide

Development Tools and Frameworks for the XDK

cycle, from source code control, modeling, and coding through debugging, testing,
profiling, and deployment. JDeveloper simplifies development by providing
deployment tools to create J2EE components such as the following:

= Applets

s JavaBeans

= Java Server Pages (JSP)

m Servlets

» Enterprise JavaBeans (E]JB)

JDeveloper also provides a public API to extend and customize the development
environment and integrate it with external products.

The Oracle XDK is integrated into JDeveloper, offering many ways to manage XML.
For example, you can use the XSQL Servlet to perform the following tasks:

= Query and manipulate database information
= Generate XML documents

s Transform XML with XSLT stylesheets

s Deliver XML on the Web

JDeveloper has an integrated XML schema-driven code editor for working on XML
Schema-based documents such as XML schemas and XSLT stylesheets. By specifying
the schema for a certain language, the editor can assist you in creating a document in
that markup language. You can use the Code Insight feature to provide a list of valid
alternatives for XML elements or attributes in the document.

Oracle JDeveloper simplifies the task of working with Java application code and XML
data and documents at the same time. It features drag-and-drop XML development
modules such as the following:

s Color-coded syntax highlighting for XML

s Built-in syntax checking for XML and XSL

» Editing support for XML schema documents
s XSQL Pages and Servlet support

s Oracle's XML parser for Java

s XSLT processor

s XDK for JavaBeans components

= XSQL Page Wizard

s XSQL Action Handlers

s Schema-driven XML editor

See Also:

s http://www.oracle.com/technology/products/jdev/
for links to JDeveloper documentation and tutorials

m http://www.oracle.com/technology/forums for the
online discussion forum for JDeveloper

Introduction to Oracle XML Developer's Kit 1-15

Development Tools and Frameworks for the XDK

User Interface XML (UIX)

UIX (User Interface XML) is a framework for developing XML-enabled Web
applications. The main focus of UIX is the user presentation layer of a program, with
additional functionality for managing events and application flow. You can use UIX to
create programs with page-based navigation, such as an online human resources
program, rather than full-featured programs requiring advanced interaction, such as
an integrated development environment (IDE).

See Also:

s http://www.oracle.com/technology/sample_code/prod
ucts/jdev/content.html for sample JDeveloper
Demonstration code for UIX

= JDeveloper online help for the complete UIX Developer’s Guide

Oracle Reports

Oracle Reports Developer and Reports Server is a development tool that enables you
to build and publish dynamically generated Web reports. A wizard expedites the use
of each major task. Report templates and live data previews allow you to customize
the report structure. You can publish reports throughout the enterprise through a
standard Web browser in formats such as the following:

= XML

» HTML with or without CSS
= PDF

n Text

= RITF

» PostScript
= PCL

See Also:

http://www.oracle.com/technology/products/reports
for links to Oracle Reports documentation

Oracle XML Gateway

Oracle XML Gateway is a set of services that enables integration with the Oracle
E-Business Suite to create and consume XML messages triggered by business events. It
integrates with Oracle Streams Advanced Queuing to enqueue and dequeue a
message, which it can then transmit to or from the business partner through any
message transport agent.

See Also:

» Oracle Streams Advanced Queuing User’s Guide and Reference

» Oracle XML DB Developer’s Guide

Oracle Data Provider for .NET

Oracle Data Provider for NET (ODP.NET) is an implementation of a data provider for
the Oracle Database. ODP.NET uses Oracle native APIs to offer fast and reliable access

1-16 Oracle XML Developer's Kit Programmer's Guide

Installing the XDK

to Oracle data and features from any .NET application and also uses and inherits
classes and interfaces available in the Microsoft NET Framework Class Library.

You can use ODP.NET and the XDK to extract data from relational and
object-relational tables and views as XML documents. The use of XML documents for
insert, update, and delete operations to the database server is also allowed. ODP.NET
supports XML natively in the database through XML DB.

ODP.NET supports XML with the following features:
= Store XML data natively in the database server as the Oracle native type XMLType.

m Access relational and object-relational data as XML data from an Oracle Database
instance into Microsoft .NET environment and process the XML with the Microsoft
NET framework.

= Save changes to the database server with XML data.
For the .NET application developer, features include the following:

s Enhancements to the OracleCommand, OracleConnection, and
OracleDataReader classes

s XML-specific classes:
— OracleXmlType
— OracleXmlStream
— OracleXmlQueryProperties

— OracleXmlSaveProperties

See Also: Oracle Data Provider for NET Developer’s Guide

Installing the XDK

This section assumes that you installed Oracle Database from either CD-ROM or from
an archive downloaded from Oracle Technology Network (OTN). The Oracle Database
10g CD installs the Oracle XDK by default. Note that you must install the demo
programs from the Oracle Database 10g Companion CD to obtain the XDK demos.
This manual presumes that you have access to the XDK demos programs.

After installing Oracle Database and the demos from the Companion CD, your Oracle
Database home should be set up as follows:

- Oracle_home_directory
| - bin: includes XDK executables
| - lib: includes XDK libraries
| - jlib: includes Globalization Support libraries for the XDK
| - nls: includes binary files used as part of globalization support
| - xdk: XDK scripts, message files, documentation, and demos
readme.html
| - admin: SQL scripts and XSL Servlet Configuration
file (XSQLConfig.xml)
| - demo: sample programs (installed from Oracle Database Companion CD)

| - cpp
| - java
| - jsp
| - doc: release notes and readme
content.html
index.html
license.html

Introduction to Oracle XML Developer's Kit 1-17

Installing the XDK

title.html
| - cpp
| - images
| - java
| - include: header files
| - mesg: error message files

The directory that contains the XDK is called the XDK home. Set the $XDK_HOME
environment variable (UNIX) or the XDK_HOME% variable (Windows) to the XDK
directory in your Oracle home. For example, you can set use csh on UNIX to set the
XDK home as follows:

setenv XDK_HOME S$ORACLE_HOME/xdk

See Also:
s Chapter 2, "Getting Started with Java XDK Components"
s Chapter 14, "Getting Started with C XDK Components"

s Chapter 19, "Getting Started with Oracle XDK Components for
C++"

1-18 Oracle XML Developer's Kit Programmer's Guide

Part |

XDK for Java

This part contains chapters describing how to use Oracle XDK in Java development.
This part contains the following chapters:

s Chapter 2, "Getting Started with Java XDK Components"

s Chapter 3, "Using the XML Parser for Java"

» Chapter 4, "Using the XSLT Processor for Java"

s Chapter 5, "Using the Schema Processor for Java"

s Chapter 6, "Using the JAXB Class Generator"

» Chapter 7, "Using the XML Pipeline Processor for Java"

s Chapter 8, "Using XDK JavaBeans"

s Chapter 9, "Using the XML SQL Utility (XSU)"

s Chapter 10, "Using the TransX Utility"

s Chapter 11, "Using the XSQL Pages Publishing Framework"

s Chapter 12, "Using the XSQL Pages Publishing Framework: Advanced Topics"
» Chapter 13, "Using SOAP with the Java XDK"

2

Getting Started with Java XDK Components

This chapter contains these topics:

Installing Java XDK Components

Java XDK Component Dependencies

Setting Java XDK Environment Variables for UNIX
Setting Java XDK Environment Variables for Windows

Verifying the Java XDK Components Version

Installing Java XDK Components

The Java XDK components are included with Oracle Database. This chapter assumes
that you have installed XDK with Oracle Database and also installed the demo
programs on the Oracle Database Companion CD. Refer to "Installing the XDK" on
page 1-17 for installation instructions and a description of the XDK directory structure.

Example 2-1 shows the UNIX directory structure for the XDK demos and the libraries
used by the XDK components. The SORACLE_HOME/xdk/demo/java subdirectories
contain sample programs and data files for the XDK for Java components. The

chapters in Part I, "XDK for Java" explain how to understand and use these programs.

Example 2—-1 Java XDK Libraries, Utilities, and Demos

- Oracle_home_directory

| - bin/
orajaxb
orapipe
oraxml
oraxsl
transx

| - lib/
classgen.jar
jdev-rt.zip
oraclexsqgl.jar
transx.zip
xml.jar
xml.jar
xmlcomp.jar
xmlcomp?2.jar
xmldemo.jar
xmlmesg.jar
xmlparserv2.jar
xschema. jar

Getting Started with Java XDK Components 2-1

Java XDK Component Dependencies

xsqglserializers.jar

xsul2.jar

| - jlib/

classesl2.jar
orail8n.jar
orail8n-collation.jar
orail8n-mapping.jar
orail8n-utility.jar

| - jdbc/
| - lib/
ojdbcld. jar
| - rdbms/
| - 9lib/
xdb.jar
| - xdk/
| demo/
| - java/
| - classgen/
| - jaxb/
| - parser/
| - pipeline/
| - schema/
| - transviewer/
| - tranxs/
| - xsql/
| - xsu/

The subdirectories contain sample programs and data files for the Java XDK

components. The chapters in Part I, "XDK for Java" explain how to use these programs
to gain an understanding of the most important Java features.

Java XDK Component Dependencies

The Java XDK components are certified and supported with JDK versions 1.2, 1.3, and
1.4. Figure 2-1 shows the dependencies of Java XDK components when using JDK 1.2

and higher.

Figure 2-1 Java XDK Component Dependencies for JDK 1.2 and Higher

Class Generator
(xml.jar)

TransX Utility JavaBeans XSQL Serviet
(xml.jar) (xmldemo.jar, xml.jar) (xml.jar)
XML SQL Utility Web Server
(xsul2.jar, xdb.jar) with

Java Servlet
JDBC Driver Support

(ojdbcl4.jar)

xml.jar)

XML Parser / XSL Processor / XML Pipeline / | Globalization Support
JAXP / XML Schema Processor

/ XML Compressor / JAXB
(xmlparserv2.jar, xmlmesg.jar,

(orail8n.jar,

orail8n-collation.jar
orail8n-mapping.jar,
orail8n-utility.jar)

’

JDK

The Java XDK components require the libraries alphabetically listed in Table 2-1. Note
that some of the libraries are not specific to the XDK, but are shared among other

Oracle Database components.

2-2 Oracle XML Developer's Kit Programmer's Guide

Java XDK Component Dependencies

Table 2-1

Java Libraries for XDK Components

Library

Directory

Includes . ..

classesl2.jar

$ORACLE_HOME/jdbc/1ib

Oracle JDBC drivers for Java 1.2 and 1.3. This JAR
depends on orail8n. jar for character set
support if you use a multibyte character set other
than UTE-8, ISO8859-1, or JA16S]JIS.

classgen.jar

$ORACLE_HOME/lib

XML class generator for Java runtime classes.

Note: This library is maintained for backward
compatibility only. You should use the JAXB class
generator in xml . jar instead.

jdev-rt.zip

SORACLE_HOME/1lib

Java GUI libraries for use when working with the
demos with the JDeveloper IDE.

ojdbcld. jar

$ORACLE_HOME/jdbc/1ib

Oracle JDBC drivers for Java 1.4. This JAR depends
on orail8n.jar for character set support if you
use a multibyte character set other than UTF-8,
1SO8859-1, or JA16SJIS.

oraclexsqgl.jar

$ORACLE_HOME/lib

Most of the XSQL Servlet classes needed to
construct XSQL pages.

Note: This archive is superseded by xml. jar and
is maintained for backward compatibility only.

orail8n.jar

SORACLE_HOME/jlib

Globalization support for JDK 1.2 and later. It is a
wrapper of all other Globalization jars and
includes character set converters. If you use a
multibyte character set other than UTF-8,
ISO8859-1, or JA16S]JIS, then place this archive in
your CLASSPATH so that JDBC can convert the
character set of the input file to the database
character set when loading XML files with XSU,
TransX Utility, or XSQL Servlet.

orail8n-collation.jar

SORACLE_HOME/jlib

Globalization collation features: the OraCollator
class and the 1x3*.glband 1x4001[0-9] .glb
files.

orail8n-mapping.jar

$ORACLE_HOME/jlib

Globalization locale and character set name
mappings: the OraResourceBundle class and
1x4000[0-9] .glb files. This archive is mainly
used by the products that need only locale name
mapping tables.

orail8n-utility.jar

SORACLE_HOME/Jjlib

Globalization locale objects: the OraLocaleInfo
class, the OraNumberFormat and
OraDateFormat classes, and the 1x[01]*.glb
files.

transx.zip

SORACLE_HOME/1lib

TransX Utility classes.

Note: This archive is replaced by xml . jar and is
retained for backward compatibility only.

xdb. jar

SORACLE_HOME/rdbms/jlib

Classes needed by xml . jar and xmlcomp2.jar
to access XMLType. It also includes classes needed
to access the XML DB Repository as well as the
XMLType DOM classes for manipulation of the
DOM tree.

Getting Started with Java XDK Components 2-3

Java XDK Component Dependencies

Table 2-1 (Cont.) Java Libraries for XDK Components

Library Directory

Includes . ..

xml.jar SORACLE_HOME/1lib

Classes from the following libraries:
. oraclexsqgl.jar

. xsglserializers.jar

n xmlcomp.jar

s xmlcomp2.jar

n transx.jar

The archive also contains the JAXB and Pipeline
Processor classes.

xmlcomp.jar SORACLE_HOME/1lib

XML JavaBeans that do not depend on the
database: DOMBuilder, XSLTrans former,
DBAccess, XSDValidator, and XMLDi ffer.

Note: This archive is included for backward
compatibility only because its classes are included
inxml. jar. They do not include the visuals Beans
included in previous releases.

xmlcomp?2 . jar SORACLE_HOME/1lib

XML JavaBeans that depend on the database:
XMLDBAccess and XMLCompress. Thus, it
depends on xdb . jar, which includes the classes
that support XML DB.

Note: This JAR is included for backward
compatibility only because its classes are included
in xml. jar. They do not include the visuals Beans
included in previous releases.

xmldemo. jar SORACLE_HOME/1lib

The visual JavaBeans: XMLTreeView,
XMLTransformPanel, XMLSourceView, and
DBViewer.

xmlmesg.jar SORACLE_HOME/1lib

Needed if you use XML parser with a language
other than English.

xmlparserv2.jar SORACLE_HOME/1lib

APIs for the following;:

= DOM and SAX parsers
s XML Schema processor
= XSLT processor

= XML compression

= JAXP

= Utility functionality such as
XMLSAXSerializer and asynchronous
DOM Builder

This library includes xschema . jar.

xschema. jar SORACLE_HOME/1lib

Includes the XML Schema classes contained in
xmlparserv2.jar.

Note: This JAR file is maintained for backward
compatibility only.

xsglserializers.jar SORACLE_HOME/1lib

Serializer classes for XSQL Servlet needed for
serialized output such as PDF.

Note: This archive is superseded by xml. jar and
is maintained for backward compatibility only.

xsul2.jar SORACLE_HOME/1lib

Classes that implement XSU. These classes have a
dependency on xdb. jar for XMLType access.

2-4 Oracle XML Developer's Kit Programmer's Guide

Setting Up the Java XDK Environment

See Also:

» Oracle Database Globalization Support Guide to learn about the
Globalization Support libraries

» Oracle Database [DBC Developer’s Guide and Reference to learn about
the JDBC libraries

» Oracle XML DB Developer’s Guide to learn about XML DB

Setting Up the Java XDK Environment

In the Oracle Database installation of the XDK, you must manually set the
$CLASSPATH (UNIX) or $CLASSPATHS (Windows) environment variables.
Alternatively, set the -classpath option when compiling and running Java
programs at the command line.

This section contains the following topics:
= Setting Java XDK Environment Variables for UNIX

= Setting Java XDK Environment Variables for Windows

Setting Java XDK Environment Variables for UNIX

Table 2-2 describes the UNIX environment variables required for use with the Java
XDK components.

Table 2-2 UNIX Environment Settings for Java XDK Components

Variable Description

$CLASSPATH Includes the following (note that a single period "." to represent the current directory is not
required but may be useful):

. :${CLASSPATHJ}: ${ORACLE_HOME}/lib/xmlparserv2.jar:
${ORACLE_HOME}/lib/xsul2.jar:S${ORACLE_HOME}/lib/xml.jar

$SCLASSPATHJ For JDK 1.2 and 1.3, set as follows:

CLASSPATHJ=${ORACLE_HOME}/jdbc/lib/classesl2.jar:
S{ORACLE_HOME}/jlib/orail8n.jar

For JDK 1.4, set as follows:
CLASSPATHJ=${ORACLE_HOME}/jdbc/lib/ojdbc.jar:${ORACLE_HOME}/jlib/orail8n.jar

The orail8n. jar is needed to support certain character sets.

$JAVA_HOME Installation directory for the Java JDK, Standard Edition. Modify the path that links to the
Java SDK.

SLD_LIBRARY_ PATH For OCIJDBC connections:
${ORACLE_HOME}/1lib:${LD_LIBRARY_PATH}

S$PATH ${JAVA_HOME} /bin

Testing the Java XDK Environment on UNIX

Table 2-3 describes the command-line utilities included in the Java XDK on UNIX.
Before you can use these utilities, you must set up your environment.

Getting Started with Java XDK Components 2-5

Setting Up the Java XDK Environment

Table 2-3 Java XDK Utilities

Executable/Class Directory/JAR Description

xsqgl $ORACLE_HOME/bin XSQL command-line utility. The script executes the
oracle.xml.xsql.XSQLCommandLine class. Edit
this shell script for your environment before use.

See Also: "Using the XSQL Pages Command-Line
Utility" on page 11-11

OracleXML $ORACLE_HOME/lib/xsul2.jar XSU command-line utility
See Also: "Using the XSU Command-Line Utility" on
page 9-14

orajaxb SORACLE_HOME/bin JAXB command-line utility

See Also: "Using the JAXB Class Generator
Command-Line Utility" on page 6-8

orapipe SORACLE_HOME/bin Pipeline command-line utility

See Also: "Using the XML Pipeline Processor
Command-Line Utility" on page 7-8

oraxml SORACLE_HOME/bin XML parser command-line utility

See Also: "Using the XML Parser Command-Line
Utility" on page 3-11

oraxsl SORACLE_HOME/bin XSLT processor command-line utility

See Also: "Using the XSLT Processor Command-Line
Utility" on page 4-6

transx SORACLE_HOME/bin TransX command-line utility

See Also: "Using the TransX Command-Line Utility"
on page 10-6

If your environment is set up correctly, then the UNIX shell script shown in
Example 2-2 should generate version and usage information for the utilities.

Example 2-2 Testing the Java XDK Environment on UNIX

#!/usr/bin/tcsh
echo;echo "BEGIN TESTING";echo

echo;echo "now testing the XSQL utility...";echo
xsql

echo; echo "now testing the XSU utility...";echo
java OracleXML

echo;echo "now testing the JAXB utility...";echo
orajaxb -version

echo;echo "now testing the Pipeline utility...";echo
orapipe -version

echo;echo "now testing the XSLT Processor utility...";echo
oraxsl

echo;echo "now testing the TransX utility...";echo
transx

echo;echo "END TESTING"

Setting Java XDK Environment Variables for Windows

Table 2—4 describes the Windows environment variables required for use with the Java
XDK components.

2-6 Oracle XML Developer's Kit Programmer's Guide

Setting Up the Java XDK Environment

Table 2-4 Windows Environment Settings for Java XDK Components

Variable Notes

$CLASSPATH% Includes the following (note that a single period "." to represent the current directory is not
required but may be useful):

. ;$CLASSPATHJ%; $ORACLE_HOME%\lib\xmlparserv2.jar;
%ORACLE_HOME%\1lib\xsul2.jar; $ORACLE_HOME%\lib\xml.jar;
%ORACLE_HOME%\1lib\xmlmesg. jar; $ORACLE_HOME%\lib\oraclexsqgl.jar

%CLASSPATHJ% For JDK 1.2 and 1.3, set as follows:
CLASSPATHJ=%0RACLE_HOME%\jdbc\lib\classesl2.jar;$ORACLE_HOME%\jlib\orail8n.jar
For JDK 1.4, set as follows:
CLASSPATHJ=%0RACLE_HOME%\jdbc\lib\ojdbc.jar; $ORACLE_HOME%\jlib\orail8n.jar
The orail8n.jar is needed to support certain character sets.

$JAVA_HOME% Installation directory for the Java SDK, Standard Edition. Modify the path that links to the
Java SDK.
%$PATHS% $JAVA_HOME%\bin

Testing the Java XDK Environment on Windows

Table 2-3 describes the command-line utilities included in the Java XDK on Windows.
Before you can use these utilities, you must set up your environment.

Table 2-5 Java XDK Utilities

Batch File/Class Directory/JAR Description

xsqgl.bat %ORACLE_HOME%\bin XSQL command-line utility. The batch file executes
the oracle.xml.xsqgl .XSQLCommandLine class.
Edit the batch file for your environment before use.

See Also: "Using the XSQL Pages Command-Line
Utility" on page 11-11

OracleXML $ORACLE_HOME%\1lib\xsul2.jar XSU command-line utility
See Also: "Using the XSU Command-Line Utility"
on page 9-14

orajaxb.bat %ORACLE_HOME%\bin JAXB command-line utility

See Also: "Using the JAXB Class Generator
Command-Line Utility" on page 6-8

orapipe.bat $ORACLE_HOME%\bin Pipeline command-line utility

See Also: "Using the XML Pipeline Processor
Command-Line Utility" on page 7-8

oraxml.bat $ORACLE_HOME%\bin XML parser command-line utility

See Also: "Using the XML Parser Command-Line
Utility" on page 3-11

oraxsl.bat $ORACLE_HOME%\bin XSLT processor command-line utility

See Also: "Using the XSLT Processor
Command-Line Utility" on page 4-6

transx.bat %ORACLE_HOME%\bin TransX command-line utility

See Also: "Using the TransX Command-Line Utility"
on page 10-6

Getting Started with Java XDK Components 2-7

Verifying the Java XDK Components Version

If your environment is set up correctly, then you can run the commands in
Example 2-3 at the system prompt to generate version and usage information for the
utilities.

Example 2-3 Testing the Java XDK Environment on Windows

xsql.bat

java OracleXML
orajaxb.bat -version
orapipe.bat -version
oraxsl.bat
transx.bat

Verifying the Java XDK Components Version

To obtain the version of XDK you are working with, use javac to compile the Java
code shown in Example 2—4.

Example 2-4 XDKVersion.java

//

// XDKVersion.java

//

import java.net.URL;

import oracle.xml.parser.v2.XMLParser;
public class XDKVersion

{

static public void main(String[] argv)

{
System.out.println("You are using version: ");
System.out.println(XMLParser.getReleaseVersion());

}

After compiling the source file with javac, run the program on the operating system
command line as follows:

java XDKVersion

2-8 Oracle XML Developer's Kit Programmer's Guide

3

Using the XML Parser for Java

This chapter contains these topics:

Introduction to the XML Parser for Java
Using the XML Parser for Java: Overview
Parsing XML with DOM

Parsing XML with SAX

Parsing XML with JAXP

Compressing XML

Tips and Techniques for Parsing XML

Introduction to the XML Parser for Java

This section contains the following topics:

Prerequisites

Prerequisites

Standards and Specifications

DOM, SAX, and JAXP in the XML Parser
Namespace Support in the XML Parser
Validation in the XML Parser

Compression in the XML Parser

The Oracle XML parser reads an XML document and uses DOM or SAX APIs to
provide programmatic access to its content and structure. You can use the parser in
validating or nonvalidating mode.

This chapter assumes that you are familiar with the following technologies:

Document Object Model (DOM). DOM is an in-memory tree representation of
the structure of an XML document.

Simple API for XML (SAX). SAX is a standard for event-based XML parsing.

Java API for XML Processing (JAXP). JAXP is a standard interface for processing
XML with Java applications. It supports the DOM and SAX standards.

Document Type Definition (DTD). An XML DTD defines the legal structure of an
XML document.

Using the XML Parser for Java 3-1

Introduction to the XML Parser for Java

= XML Schema. Like a DTD, an XML schema defines the legal structure of an XML
document.

= XML Namespaces. Namespaces are a mechanism for differentiating element and
attribute names.

If you require a general introduction to the preceding technologies, consult the XML
resources listed in "Related Documents” on page xxxvi of the preface.

Standards and Specifications

The DOM Level 1, Level 2, and Level 3 specifications are W3C Recommendations. You
can find links to the specifications for all three levels at the following URL:

http://www.w3.org/DOM/DOMTR
SAX is available in version 1.0, which is deprecated, and 2.0. It is not a W3C
specification. You can find the documentation for SAX at the following URL:

http://www.saxproject.org/

XML Namespaces are a W3C Recommendation. You can find the specification at the
following URL:

http://www.w3.0org/TR/REC-xml-names

JAXP version 1.2 includes an XSLT framework plus some updates to the parsing API
to support DOM Level 2 and SAX version 2.0 and an improved scheme to locate
pluggable implementations. JAXP provides support for XML schema and an XSLT

compiler. You can access the JAXP specification, which is produced by Sun
Microsystems, at the following URL:

http://java.sun.com/xml/downloads/jaxp.html

See Also: Chapter 29, "XDK Standards" for an account of the
standards supported by the XDK

DOM, SAX, and JAXP in the XML Parser

XMLParser is the abstract base class for the XML parser for Java. An instantiated
parser invokes the parse () method to read an XML document. Figure 3-1 illustrates
the basic parsing process.

3-2 Oracle XML Developer's Kit Programmer's Guide

Introduction to the XML Parser for Java

Figure 3—1 XML Parsing Process

XML Parser
(Processor)

X

eads * * Content and Structure

XML
document

I
Storage Units

(entities)
Parsed Unparsed
Data Data
/
Characters
y4 N\
Character
Data Markup

The following APIs provide a Java application with access to a parsed XML document:

= DOM API, which parses XML documents and builds a tree representation of the
documents in memory. Use a DOMParser object to parse with DOM.

= SAX API, which processes an XML document as a stream of events, which means
that a program cannot access random locations in a document. Use a SAXParser
object to parse with SAX.

= JAXP, which is a Java-specific API that supports DOM, SAX, and XSL. Use a
DocumentBuilder or SAXParser object to parse with JAXP.

The sample XML document in Example 3-1 helps elucidate the differences among
DOM, SAX, and JAXP.

Example 3-1 Sample XML Document

<?xml version="1.0"?>

<EMPLIST>
<EMP>
<ENAME>MARY</ENAME>
</EMP>
<EMP>
<ENAME>SCOTT</ENAME>
</EMP>

</EMPLIST>

DOM in the XML Parser

DOM builds an in-memory tree representation of the XML document. For example,
the DOM API receives the document described in Example 3-1 and creates an
in-memory tree as shown in Figure 3-2. DOM provides classes and methods to
navigate and process the tree.

In general, the DOM API provides the following advantages:

s Itis easier to use than SAX because it provides a familiar tree structure of objects.

Using the XML Parser for Java 3-3

Introduction to the XML Parser for Java

= You can perform structural manipulations of the XML tree such as reordering
elements, adding to and deleting elements and attributes, and renaming elements.

= Interactive applications can store the object model in memory, enabling users to
access and manipulate it.

s Although DOM as a standard does not support XPath, most XPath
implementations use DOM. The Oracle XDK includes DOM API extensions to
support XPath.

SAX in the XML Parser

Unlike DOM, SAX is event-based, so it does not build in-memory tree representations
of input documents. SAX processes the input document element by element and can
report events and significant data to callback methods in the application. The XML
document in Example 3-1 is parsed as a series of linear events as shown in Figure 3-2.

In general, the SAX API provides the following advantages:

s It is useful for search operations and other programs that do not need to
manipulate an XML tree.

= It does not consume significant memory resources.

s Itis faster than DOM when retrieving XML documents from a database.

Figure 3-2 Comparing DOM (Tree-Based) and SAX (Event-Based) APIs

The SAX interface creates

XML Document

<?xml version = "1.0"?>
<EMPLIST>
<EMP>
<ENAME>MARY< /ENAME>
</EMP>
<EMP>
<ENAME>SCOTT</ENAME>
</EMP>
</EMPLIST>

The DOM interface creates a
TREE structure based on the
XML Document

<EMPLIST>
7/ AN
<EMP> <EMP>
I I
<ENAME> <ENAME>
I I
MARY SCOTT

Useful for applications that include
changes eg. reordering, adding, or
deleting elements.

a series of linear events
based on the XML
document

start document

start element: EMPLIST
start element: EMP
start element: ENAME
characters: MARY

end element: ENAME

end element: EMP

start element: EMP
start element: ENAME
characters: SCOTT
end element: ENAME
end element: EMP

end element: EMPLIST
end document

Useful for applications such
as search and retrieval that do
not change the "XML tree".

JAXP in the XML Parser

The JAXP API enables you to plug in an implementation of the SAX or DOM parser.
The SAX and DOM APIs provided in the Oracle XDK are examples of vendor-specific
implementations supported by JAXP.

In general, the advantage of JAXP is that you can use it to write interoperable
applications. If an application uses features available through JAXP, then it can very
easily switch the implementation.

The main disadvantage of JAXP is that it runs more slowly than vendor-specific APIs.
In addition, several features are available through Oracle-specific APIs that are not

3-4 Oracle XML Developer's Kit Programmer's Guide

Introduction to the XML Parser for Java

available through JAXP APIs. Only some of the Oracle-specific features are available
through the extension mechanism provided in JAXP. If an application uses these
extensions, however, then the flexibility of switching implementation is lost.

Namespace Support in the XML Parser

The XML parser for Java can parse unqualified element types and attribute names as
well as those in namespaces. Namespaces are a mechanism to resolve or avoid name
collisions between element types or attributes in XML documents by providing
"universal" names. Consider the XML document shown in Example 3-2.

Example 3-2 Sample XML Document Without Namespaces

<?xml version='1.0'?>
<addresslist>
<company>
<address>500 Oracle Parkway,
Redwood Shores, CA 94065
</address>
</company>
<l-= ... ==
<employee>
<lastname>King</lastname>
<address>3290 W Big Beaver
Troy, MI 48084
</address>
</employee>
<l-- .. ==
</addresslist>

Without the use of namespaces, an application processing the XML document in
Example 3-2 would not know whether the <address> tag refers to a company or
employee address. As shown in Example 3-3, you can use namespaces to distinguish
the <address> tags. The example declares the following XML namespaces:

http://www.oracle.com/employee
http://www.oracle.com/company

Example 3-3 associates the com prefix with the first namespace and the emp prefix
with the second namespace. Thus, an application can distinguish <com:address>
from <emp:address>.

Example 3-3 Sample XML Document with Namespaces

<?xml version='1.0'?>
<addresslist>
<l== .. ==
<com:company
xmlns:com="http://www.oracle.com/company">
<com:address>500 Oracle Parkway,
Redwood Shores, CA 94065
</com:address>
</com:company>
<l-- .. ==
<emp:employee
xmlns:emp="http://www.oracle.com/employee">
<emp:lastname>King</emp:lastname>
<emp:address>3290 W Big Beaver
Troy, MI 48084
</emp:address>

Using the XML Parser for Java 3-5

Introduction to the XML Parser for Java

</emp:employee>

It is helpful to remember the following terms when parsing documents that use
namespaces:

= Namespace prefix, which is a namespace prefix declared with xm1ns. In
Example 3-3, emp and com are namespace prefixes.

= Local name, which is the name of an element or attribute without the namespace
prefix. In Example 3-3, employee and company are local names.

s Qualified name, which is the local name plus the prefix. In Example 3-3,
emp: employee and com: company are qualified names.

= Namespace URI, which is the URI assigned to xmlns. In Example 3-3,
http://www.oracle.com/employee and
http://www.oracle.com/company are namespace URIs.

= Expanded name, which is obtained by substituting the namespace URI for the
namespace prefix. In Example 3-3,
http://www.oracle.com/employee:employee and
http://www.oracle.com/company : company are expanded element names.

Validation in the XML Parser

Applications invoke the parse () method to parse XML documents. Typically,
applications invoke initialization and termination methods in association with the
parse () method. You can use the setValidationMode () method defined in
oracle.xml.parser.v2.XMLParser to set the parser mode to validating or
nonvalidating.

By parsing an XML document according to the rules specified in a DTD or XML
schema, a validating XML parser determines whether the document conforms to a
DTD to XML schema. If it conforms then the document is valid, which means that the
structure of the document conforms to the DTD or schema rules. A nonvalidating
parser checks for well-formedness only.

Table 3-1 shows the flags that you can use in setvalidationMode () to set the
validation mode in the Oracle XDK parser.

Table 3—1 XML Parser for Java Validation Modes

Name Value The XML Parser. . .
Nonvalidating mode NONVALIDATING Verifies that the XML is well-formed and parses the data.
DTD validating mode DTD_VALIDATION Verifies that the XML is well-formed and validates the XML data

against the DTD. The DTD defined in the <! DOCTYPE>
declaration must be relative to the location of the input XML
document.

Schema validation mode SCHEMA_VALIDATION Validates the XML Document according to the XML schema
specified for the document.

LAX validation mode SCHEMA_LAX_VALIDATION Tries to validate part or all of the instance document as long as it
can find the schema definition. It does not raise an error if it
cannot find the definition. See the sample program
XSDLax . java in the schema directory.

3-6 Oracle XML Developer's Kit Programmer's Guide

Introduction to the XML Parser for Java

Table 3-1 (Cont.) XML Parser for Java Validation Modes

Name

Value The XML Parser. ..

Strict validation mode

Tries to validate the whole instance document, raising errors if it
cannot find the schema definition or if the instance does not
conform to the definition.

SCHEMA_STRICT_VALIDATION

Partial validation mode

PARTIAL_VALIDATION Validates all or part of the input XML document according to the
DTD, if present. If the DTD is not present, then the parser is set to

nonvalidating mode.

Auto validation mode

AUTO_VALIDATION Validates all or part of the input XML document according to the
DTD or XML schema, if present. If neither is present, then the

parser is set to nonvalidating mode.

In addition to setting the validation mode with setValidationMode (), you can use
the oracle.xml.parser.schema.XSDBuilder class to build an XML schema and
then configure the parser to use it by invoking the XMLParser . setXMLSchema ()
method. In this case, the XML parser automatically sets the validation mode to
SCHEMA_STRICT_VALIDATION and ignores the schemaLocation and
noNamespaceSchemaLocation attributes. You can also change the validation mode
to SCHEMA_LAX_VALIDATION. The XMLParser.setDoctype () method is a parallel
method for DTDs, but unlike setXMLSchema () it does not alter the validation mode.

See Also: Oracle Database XML Java API Reference to learn about the
XMLParser and XSDBuilder classes

Compression in the XML Parser

You can use the XML compressor, which is implemented in the XML parser, to
compress and decompress XML documents. The compression algorithm is based on
tokenizing the XML tags. The assumption is that any XML document repeats a
number of tags and so tokenizing these tags gives considerable compression. The
degree of compression depends on the type of document: the larger the tags and the
lesser the text content, the better the compression.

The Oracle XML parser generates a binary compressed output from an in-memory
DOM tree or SAX events generated from an XML document. Table 3-2 describes the
two types of compression.

Table 3-2 XML Compression with DOM and SAX

Type Description Compression APIs

DOM-based The goal is to reduce the size of the XML Use the writeExternal () method to generate
document without losing the structural and ~ compressed XML and the readExternal ()
hierarchical information of the DOM tree. method to reconstruct it. The methods are in the
The parser serializes an in-memory DOM oracle.xml.parser.v2.XMLDocument class.
tree, corresponding to a parsed XML
document, and generates a compressed XML
output stream. The serialized stream
regenerates the DOM tree when read back.

SAX-based The SAX parser generates a compressed To generate compressed XML, instantiate

stream when it parses an XML file. SAX
events generated by the SAX parser are

handled by the SAX compression utility,
which generates a compressed binary

stream. When the binary stream is read back,

the SAX events are generated.

oracle.xml.comp.CXMLHandlerBase by
passing an output stream to the constructor. Pass the
object to SAXParser.setContentHandler () and
then execute the parse () method. Use the
oracle.xml.comp.CXMLParser class to
decompress the XML.

Note: CXMLHandlerBase implements both SAX 1.0
and 2.0, but because 1.0 is deprecated, it is
recommended that you use the 2.0 APL

Using the XML Parser for Java 3-7

Using the XML Parser for Java: Overview

The compressed streams generated from DOM and SAX are compatible, that is, you
can use the compressed stream generated from SAX to generate the DOM tree and vice
versa. As with XML documents in general, you can store the compressed XML data
output in the database as a BLOB.

When a program parses a large XML document and creates a DOM tree in memory, it
can affect performance. You can compress an XML document into a binary stream by
serializing the DOM tree. You can regenerate the DOM tree without validating the
XML data in the compressed stream. You can treat the compressed stream as a
serialized stream, but the data in the stream is more controlled and managed than the
compression implemented by Java's default serialization.

Note: Oracle Text cannot search a compressed XML document.
Decompression reduces performance. If you are transferring files
between client and server, then HTTP compression can be easier.

Using the XML Parser for Java: Overview

The fundamental component of any XML development is the XML parser. The XML
parser for Java is a standalone XML component that parses an XML document (and
possibly also a standalone DTD or XML Schema) so that your program can process it.
This section contains the following topics:

= Using the XML Parser for Java: Basic Process
= Running the XML Parser Demo Programs

= Using the XML Parser Command-Line Utility

Note: You can use the parser with any supported JavaVMs. With
Oracle9i or higher you can load the parser into the database and use
the internal Oracle9i JVM. For other database versions, run the parser
in an external JVM and connect to a database through JDBC.

Using the XML Parser for Java: Basic Process

Figure 3-3 shows how to use the XML parser in a typical XML processing application.

Figure 3-3 XML Parser for Java

Parsed XML

)
—
w)

+ DOM or SAX

Parser
Original
XML
Document)| Parsed XSL
XML XSL
Schema Stylesheet

Oracle XML Developer's Kit Programmer's Guide

Using the XML Parser for Java: Overview

The basic process of the application shown in Figure 3-3 is as follows:

1. The DOM or SAX parser parses input XML documents. For example, the program
can parse XML data documents, DTDs, XML schemas, and XSL stylesheets.

2, If you implement a validating parser, then the processor attempts to validate the
XML data document against any supplied DTDs or XML schemas.

See Also:

» Chapter 4, "Using the XSLT Processor for Java"
» Oracle Database XML Java API Reference for XML parser classes and

methods

Running the XML Parser Demo Programs

Demo programs for the XML parser for Java are included in
$ORACLE_HOME/xdk/demo/java/parser. The demo programs are distributed
among the subdirectories described in Table 3-3.

Table 3-3 Java Parser Demos

Directory Contents These programs ...

common class.xml Provide XML files and Java programs for general use with the
DemoUtil.java XML parser. For example, you can use the XSLT stylesheet
empl . xml iden.xsl to achieve an identity transformation of the XML
family.dtd files. DemoUtil. java implements a helper method to create
family.xml a URL from a file name. This method is used by many of the
iden.xsl other demo programs.

NSExample.xml
traversal.xml

comp DOMCompression.java Mustrate DOM and SAX compression:
DOMDeCompression.java » DOMCompression.java compresses a DOM tree.
SAXCompression.java
SAXDeCompression.java s DOMDeCompression.java reads back a DOM from a
SampleSAXHandler.java Compressed stream.
sample.xml " SAXCompression. java compresses the output from a
xml.ser SAX parser.
= SAXDeCompression.java regenerates SAX events
from the compressed stream.
s SampleSAXHandler.java illustrates use of a handler
to handle the events thrown by the SAX DeCompressor.
dom AutoDetectEncoding.java Ilustrate uses of the DOM API:

DOM2Namespace. java
DOMNamespace. java
DOMRangeSample. java
DOMSample.java
EventSample.java

I18nSafeXMLFileWritingSample.java
NodeIteratorSample.java
ParseXMLFromString.java

TreeWalkerSample. java

s DOM2Namespace. java shows how to use DOM Level
2.0 APIs.

= DOMNamespace.java shows how to use Namespace
extensions to DOM APIs.

= DOMRangeSample. java shows how to use DOM Range
APIs.

= DOMSample.java shows basic use of the DOM APIs.

s EventSample.java shows how to use DOM Event
APIs.

s NodeIteratorSample.java showshow to use DOM
Iterator APIs.

s TreeWalkerSample.java shows how to use DOM
TreeWalker APIs.

Using the XML Parser for Java 3-9

Using the XML Parser for Java: Overview

Table 3-3 (Cont.) Java Parser Demos

Directory Contents

These programs ...

jaxp JAXPExamples.java Ilustrate various uses of the JAXP API:
age.xsl = JAXPExamples.java provides a few examples of how
general.xml to use the JAXP 1.1 API to run the Oracle engine.
jaxpone.xml) .
. = oraContentHandler.java implements a SAX content
jaxpone.xsl .
axpthree . xsl handler. The program invokes methods such as
], '1 startDocument (), endDocument (),
Jaxptwo.xs) startElement (), and endElement () when it
oraContentHandler. java recognizes an XML tag.

sax SAX2Namespace. java Illustrate various uses of the SAX APIs:
SAXNameSpac.e -Java s SAX2Namespace.java shows how to use SAX 2.0.
SAXSample.java
Tokenizer.java . SAXNa;nespace . java shows how to use namespace

extensions to SAX APIs.

s SAXSample.java shows basic use of the SAX APIs.

s Tokenizer.java shows how to use the XMLToken
interface APIs. The program implements the XMLToken
interface, which must be registered with the
setTokenHandler () method. A request for XML
tokens is registered with the setToken () method.
During tokenizing, the parser does not validate the
document and does not include or read internal /external
utilities.

xslt XSLSample. java Illustrate the transformation of documents with XSLT:
XSLSamplez.Java = XSLSample.java shows how to use the XSL processing
match. xml capabilities of the Oracle XML parser. It transforms an
match.xsl input XML document with a given input stylesheet. This
math.xml demo builds the result of XSL transformations as a
math.xsl DocumentFragment and so does not support

number . xml
number.xsl
position.xml
position.xsl
reverse.xml
reverse.xsl
string.xml
string.xsl
style.txt
variable.xml
variable.xsl

xs1:output features.

XSLSample2. java transforms an input XML document
with a given input stylesheet. The demo streams the
result of the XSL transformation and so supports
xsl:output features.

See Also: "Running the XSLT Processor Demo Programs" on
page 4-4

Documentation for how to compile and run the sample programs is located in the
README. The basic steps are as follows:

1. Change into the SORACLE_HOME/xdk/demo/java/parser directory (UNIX) or
$ORACLE_HOME$\xdk\demo\ java\parser directory (Windows).

2. Set up your environment as described in "Setting Up the Java XDK Environment"

on page 2-5.

3. Change into each of the following subdirectories and run make (UNIX) or
Make.bat (Windows) at the command line. For example:

cd comp;make;cd ..
cd jaxp;make;cd ..
cd sax;make;cd ..
cd dom;make;cd ..

3-10 Oracle XML Developer's Kit Programmer's Guide

Parsing XML with DOM

cd xslt;make;cd ..
The make file compiles the source code in each directory, runs the programs, and
writes the output for each program to a file with an * . out extension.

4. You can view the * . out files to view the output for the programs.

Using the XML Parser Command-Line Utility

The oraxml utility, which is located in $ORACLE_HOME/bin (UNIX) or
$ORACLE_HOME$\bin (Windows), is a command-line interface that parses XML
documents. It checks for both well-formedness and validity.

To use oraxml ensure that the following is true:

= Your CLASSPATH is set up as described in "Setting Up the Java XDK Environment"
on page 2-5. In particular, make sure you CLASSPATH environment variable points
to the xmlparserv?2. jar file.

= Your PATH environment variable can find the Java interpreter that comes with the
version of the JDK that you are using.

Table 34 lists the oraxml command-line options.

Table 3—-4 oraxml Command-Line Options

Option Purpose
-help Prints the help message
-version Prints the release version

-novalidate fileName Checks whether the input file is well-formed

-dtd fileName Validates the input file with DTD Validation
-schema fileName Validates the input file with Schema Validation
-log logfile Writes the errors to the output log file

-comp fileName Compresses the input XML file

-decomp fileName Decompresses the input compressed file

-enc fileName Prints the encoding of the input file

-warning Show warnings

For example, change into the SORACLE_HOME/xdk/demo/java/parser/common
directory. You can validate the document family.xml against family.dtd by
executing the following on the command line:

oraxml -dtd -enc family.xml

The output should appear as follows:

The encoding of the input file: UTF-8

The input XML file is parsed without errors using DTD validation mode.

Parsing XML with DOM

The W3C standard library org.w3c . dom defines the Document class as well as
classes for the components of a DOM. The Oracle XML parser includes the standard
DOM APIs and is compliant with the W3C DOM recommendation. Along with

Using the XML Parser for Java 3-11

Parsing XML with DOM

org.w3c.dom, the Oracle XML parser includes classes that implement the DOM APlIs
and extend them to provide features such as printing document fragments and
retrieving namespace information.

This section contains the following topics:

s Using the DOM API

= Performing Basic DOM Parsing

s Performing DOM Operations with Namespaces
s Performing DOM Operations with Events

s Performing DOM Operations with Ranges

s Performing DOM Operations with TreeWalker

Using the DOM API

To implement DOM-based components in your XML application you can use the
following XDK classes:

m oracle.xml.parser.v2.XMLParser. This class serves as a base class for the
DOMParser and SAXParser classes. It contains methods to parse XML 1.0
documents according to the W3C recommendation. Note that this class cannot be
instantiated. Applications may use the DOM or SAX parser depending on their
requirements.

s oracle.xml.parser.v2.DOMParser. This class implements an XML 1.0 parser
according to the W3C recommendation. Because DOMParser extends XMLParser,
all methods of XML Parser are available to DOMParser.

You can also make use of the DOMNamespace and DOM2Namespace classes, which are
sample programs included in $ORACLE_HOME/xdk/demo/java/parser/dom.

Figure 34 illustrates how to create a parser and use it to access a DOM representation
of an input document.

3-12 Oracle XML Developer's Kit Programmer's Guide

Parsing XML with DOM

Figure 3—-4 Basic Architecture of the DOM Parser

XDK for Java: XML Parser for Java — DOM Parser()

4

new
DOMParser()

A Available properties:

-| - setValidationMode
[default = not]

- setPreserveWhitespace
[default = true]

- setDoctype
[specify DTD to use for
parsing]

- setBaseURL
[refers other locations to
base location if reading
from outside source]

- showWarnings

DOMParser.
reset()

file, string
buffer, or URL
xml input

XMLParser.
parseDTD()

XMLParser.
parse()

XMLParser.
getDocument-
Type()

DTD
object

XMLParser.
getDocument

DOM
document

Typically Node
,~ | class methods

A To print, use the
print() method.
This is a
nonstandard
DOM method

Apply other
DOM methods

The basic stages for parsing an input XML document and accessing it through a DOM

are as follows:

1. Create a DOMParser object by calling the DOMParser () constructor. You can use
this parser to parse input XML data documents as well as DTDs.

2. Configure parser properties. Table 3-5 lists useful configuration methods.

Table 3-5 DOMParser Configuration Methods

Method

Use this method to ...

setBaseURL ()

Set the base URL for loading external entities and DTDs. Call
this method if the XML document is an InputStream.

setDoctype ()

Specify the DTD to use when parsing.

setErrorStream/()

Create an output stream for the output of errors and
warnings.

setPreserveWhitespace ()

Instruct the parser to preserve the whitespace in the input
XML document.

setValidationMode () Set the validation mode of the parser. Table 3-1 describes the
flags that you can use with this method.
showlarnings () Specify whether the parser should print warnings.

Using the XML Parser for Java 3-13

Parsing XML with DOM

3. DParse the input document by invoking the parse () method. The program builds
a tree of Node objects in memory.

4. Invoke getDocument

() torequest that the parser should return a handle to the

root of the in-memory DOM tree, which is an XMLDocument object. You can use
this handle to access every part of the parsed XML document. The XMLDocument
class implements the interfaces shown in Table 3-6.

Table 3-6 Some Interfaces Implemented by XMLDocument

Interface

Defines ...

org.w3c.dom.Node

A single node in the document tree and methods to access and
process the node.

org.w3c.dom.Document

A Node that represents the entire XML document.

org.w3c.dom.Element

A Node that represents an XML element.

5. Obtain and manipulate DOM nodes of the retrieved document by calling various
XMLDocument methods. You can use DOMParser.print () method to print the
DOM tree. Table 3-7 lists some useful methods for obtaining nodes.

Table 3-7 Useful XMLDocument Methods

Method

Use this method to ...

getAttributes ()

Generate a NamedNodeMap containing the attributes of this
node (if it is an element) or null otherwise.

getElementsbyTagName ()

Retrieve recursively all elements that match a given tag name
under a certain level. This method supports the * tag, which
matches any tag. Call getElementsByTagName ("*")
through the handle to the root of the document to generate a
list of all elements in the document.

getExpandedName () Obtain the expanded name of the element. This method is
specified in the NSName interface.

getLocalName () Obtain the local name for this element. If an element name is
<El:locn xmlns:El="http://www.oracle.com/"/>,
then locn is the local name.

getNamespaceURI () Obtain the namespace URI of this node, or null if it is
unspecified. If an element name is <E1:locn
xmlns:El="http://www.oracle.com/" />, then
http://www.oracle.comis the namespace URI

getNodeName () Obtain the name of a node in the DOM tree.

getNodevValue () Obtain the value of this node, depending on its type. This
mode is in the Node interface.

getPrefix() Obtain the namespace prefix for an element.

getQualifiedName () Obtain the qualified name for an element. If an element name
is<El:locn xmlns:El="http://www.oracle.com/"/>,
then E1: locn is the qualified name..

getTagName () Obtain the name of an element in the DOM tree.

6. Reset the parser state by invoking the reset () method. The parser is now ready
to parse a new document.

3-14 Oracle XML Developer's Kit Programmer's Guide

Parsing XML with DOM

Performing Basic DOM Parsing

The DOMSample. java program illustrates the basic steps of DOM parsing. The
program receives an XML file as input, parses it, and prints the elements and attributes
in the DOM tree.

The program follows these steps:

1.

Create a new DOMParser () object. The following code fragment from
DOMSample. java illustrates this technique:

DOMParser parser = new DOMParser();

Configure the parser. The following code fragment from DOMSample. java
specifies the error output stream, sets the validation mode to DTD validation, and
enables warning messages:

parser.setErrorStream(System.err) ;
parser.setValidationMode (DOMParser .DTD_VALIDATION) ;
parser.showWarnings (true) ;

Parse the input XML document. The following code fragment from
DOMSample. java shows how to parse an instance of the java.net.URL class:

parser.parse(url);

Note that the XML input can be a file, string buffer, or URL. As illustrated by the
following code fragment, DOMSample . java accepts a filename as a parameter
and calls the createURL helper method to construct a URL object that can be
passed to the parser:

public class DOMSample
{
static public void main(String[] argv)
{
try
{
if (argv.length != 1)

// Must pass in the name of the XML file.
System.err.println("Usage: java DOMSample filename");
System.exit (1) ;

}

// Generate a URL from the filename.
URL url = DemoUtil.createURL(argv([0]);

Obtain a handle to the root of the in-memory DOM tree. You can use the
XMLDocument object to access every part of the parsed XML document. The
following code fragment from DOMSample . java illustrates this technique:

XMLDocument doc = parser.getDocument () ;

Print the elements and attributes of the DOM tree. The following code fragment
from DOMSample . java illustrates this technique:

System.out.print ("The elements are: ");
printElements (doc) ;

System.out.println("The attributes of each element are: ");
printElementAttributes (doc) ;

Using the XML Parser for Java 3-15

Parsing XML with DOM

The program implements the printElements () method, which calls
getElementsByTagName () to obtain a list of all the elements in the DOM tree. It
then loops through each item in the list and calls getNodeName () to print the
name of each element:

static void printElements (Document doc)

{
NodeList nl = doc.getElementsByTagName ("*");
Node n;

for (int 1=0; i<nl.getLength(); 1i++)
{
n = nl.item(i);
System.out.print (n.getNodeName() + " ");

System.out.println();
}

The program implements the printElementAttributes () method, which
calls Document . getElementsByTagName () to obtain a list of all the elements
in the DOM tree. It then loops through each element in the list and calls
Element.getAttributes () to obtain the list of attributes for the element. It
then calls Node . getNodeName () to obtain the attribute name and
Node.getNodeValue () to obtain the attribute value:

static void printElementAttributes (Document doc)
{
NodeList nl = doc.getElementsByTagName ("*");
Element e;
Node n;
NamedNodeMap nnm;

String attrname;
String attrval;
int 1, len;

len = nl.getLength();

for (int j=0; j < len; J++)

{
e = (Element)nl.item(J);
System.out.println(e.getTagName() + ":");
nnm = e.getAttributes();

if (nnm != null)

for (i=0; i<nnm.getLength(); i++)
{
n = nnm.item(1i);
attrname = n.getNodeName () ;
attrval = n.getNodeValue() ;
System.out.print (" " + attrname + " = " + attrval);

}
System.out.println();

3-16 Oracle XML Developer's Kit Programmer's Guide

Parsing XML with DOM

Performing DOM Operations with Namespaces

The DOM2Namespace. java program illustrates a simple use of the parser and
Namespace extensions to the DOM APIs. The programs receives an XML document,
parses it, and prints the elements and attributes in the document.

The initial four steps of the "Performing Basic DOM Parsing" on page 3-15, from parser
creation to the getDocument () call, are basically the same as for

DOM2Namespace . java. The principal difference is in the step for printing the DOM
tree, which is step 5. The DOM2Namespace . java program does the following instead:

// Print document elements
printElements (doc) ;

// Print document element attributes
System.out.println("The attributes of each element are: ");
printElementAttributes (doc);

The printElements () method implemented by DOM2Namespace . java calls
getElementsByTagName () to obtain a list of all the elements in the DOM tree. It
then loops through each item in the list and casts each Element to an nsElement. For
each nsElement it callsnsElement .getPrefix () to get the namespace prefix,
nsElement.getLocalName () to get the local name, and

nsElement .getNamespaceURI () to get the namespace URL:

static void printElements (Document doc)
{
NodeList nl = doc.getElementsByTagName ("*");
Element nsElement;
String prefix;
String localName;
String nsName;

System.out.println("The elements are: ");
for (int i=0; i < nl.getLength(); i++)
{

nsElement = (Element)nl.item(i);

prefix = nsElement.getPrefix();
System.out.println(" ELEMENT Prefix Name :" + prefix);

localName = nsElement.getLocalName () ;
System.out.println(" ELEMENT Local Name :" + localName) ;

nsName = nsElement.getNamespaceURI () ;
System.out.println(" ELEMENT Namespace :" + nsName) ;

}
System.out.println();

}

The printElementAttributes () method calls

Document .getElementsByTagName () to obtain a NodeList of the elements in the
DOM tree. It then loops through each element and calls

Element.getAttributes () to obtain the list of attributes for the element as special
list called a NamedNodeMap. For each item in the attribute list it calls
nsAttr.getPrefix () to get the namespace prefix, nsAttr.getLocalName () to
get the local name, and nsAttr.getValue () to obtain the value:

static void printElementAttributes (Document doc)

{
NodeList nl = doc.getElementsByTagName ("*");

Using the XML Parser for Java 3-17

Parsing XML with DOM

Element e;

Attr nsAttr;
String attrpfx;
String attrname;
String attrval;
NamedNodeMap nnm;
int 1, len;

len = nl.getLength();
for (int j=0; j < len; j++)
{
e = (Element) nl.item(j);
System.out.println(e.getTagName() + ":");
nnm = e.getAttributes();
if (nnm != null)
for (i=0; 1 < nnm.getLength(); i++)
{
nsAttr = (Attr) nnm.item(i);
attrpfx = nsAttr.getPrefix();
attrname = nsAttr.getLocalName() ;

attrval = nsAttr.getNodeValue();

System.out.println(" " + attrpfx + ":"
+ attrval);

}
System.out.println();

Performing DOM Operations with Events

The EventSample. java program shows how to register various events with an
event listener. For example, if a node is added to a specified DOM element, an event is
triggered, which causes the listener to print information about the event.

The program follows these steps:

1.

Instantiate an event listener. When a registered change triggers an event, this event
is passed to the event listener, which handles it. The following code fragment from

EventSample. java shows the implementation of the listener:

eventlistener evtlist = new eventlistener();

class eventlistener implements EventListener
{

public eventlistener() {}

public void handleEvent (Event e)

{

String s = " Event "+e.getType()+" received " + "\n";
s += " Event is cancelable :"+e.getCancelable()+"\n";
s += " Event is bubbling event :"+e.getBubbles()+"\n";
s += " The Target is " + ((Node) (e.getTarget())).getNodeName() + "\n\n";

System.out.println(s);

3-18 Oracle XML Developer's Kit Programmer's Guide

Parsing XML with DOM

2. Instantiate a new XMLDocument and then call getImplementation () to
retrieve a DOMImplementation object. You can call the hasFeature () method
to determine which features are supported by this implementation. The following
code fragment from EventSample. java illustrates this technique:

XMLDocument docl = new XMLDocument () ;
DOMImplementation impl = docl.getImplementation();

System.out.println("The impl supports Events "+
impl.hasFeature("Events", "2.0"));

System.out.println("The impl supports Mutation Events "+
impl.hasFeature("MutationEvents", "2.0"));

3. Register desired events with the listener. The following code fragment from
EventSample. java registers three events on the document node:

docl.addEventListener ("DOMNodeRemoved", evtlist, false);
docl.addEventListener ("DOMNodeInserted", evtlist, false);
docl.addEventListener ("DOMCharacterDataModified", evtlist, false);

The following code fragment from EventSample. java creates a node of type
XMLElement and then registers three events on this node:

XMLElement el = (XMLElement)docl.createElement ("element");

el.addEventListener ("DOMNodeRemoved", evtlist, false);
el.addEventListener ("DOMNodeRemovedFromDocument", evtlist, false);
el.addEventListener ("DOMCharacterDataModified", evtlist, false);

4. Perform actions that trigger events, which are then passed to the listener for
handling. The following code fragment from EventSample. java illustrates this
technique:

att.setNodeValue("abc");
el.appendChild(ell);
el.appendChild(text);
text.setNodevValue("xyz") ;
docl.removeChild(el) ;

Performing DOM Operations with Ranges

According to the W3C DOM specification, a range identifies a range of content in a
Document, DocumentFragment, or Attr. It selects the content between a pair of
boundary-points that correspond to the start and the end of the range. Table 3-8
describes useful range methods accessible through XMLDocument.

Table 3-8 Useful Methods in the Range Class

Method Description

cloneContents () Duplicates the contents of a range
deleteContents () Deletes the contents of a range
getCollapsed() Returns TRUE is the range is collapsed
getEndContainer () Obtains the node within which the range ends
getStartContainer () Obtains the node within which the range begins
selectNode () Selects a node and its contents

Using the XML Parser for Java 3-19

Parsing XML with DOM

Table 3-8 (Cont.) Useful Methods in the Range Class

Method Description

selectNodeContents () Selects the contents within a node

setEnd() Sets the attributes describing the end of a range

setStart () Sets the attributes describing the beginning of a range

The DOMRangeSample. java program illustrates some of the things that you can do
with ranges.

The initial four steps of the "Performing Basic DOM Parsing" on page 3-15, from parser
creation to the getDocument () call, are the same as for DOMRangeSample. java.
The DOMRangeSample. java program then proceeds by following these steps:

1. After calling getDocument () to create the XMLDocument, create a range object
with createRange () and call setStart () and setEnd () to setits boundaries.
The following code fragment from DOMRangeSample. java illustrates this
technique:

XMLDocument doc = parser.getDocument () ;

Range r = (Range) doc.createRange();
XMLNode ¢ = (XMLNode) doc.getDocumentElement () ;

// set the boundaries
r.setStart(c,0);
r.setEnd(c,1);

2. Call XMLDocument methods to obtain information about the range and
manipulate its contents. Table 3-8 describes useful methods. The following code
fragment from DOMRangeSample . java selects the contents of the current node
and prints it:

r.selectNodeContents (c) ;

System.out.println(r.toString());

The following code fragment clones a range contents and prints it:
XMLDocumentFragment df =(XMLDocumentFragment) r.cloneContents();

df .print (System.out) ;

The following code fragment obtains and prints the start and end containers for
the range:

c = (XMLNode) r.getStartContainer();
System.out.println(c.getText());

¢ = (XMLNode) r.getEndContainer();
System.out.println(c.getText());

Only some of the features of the demo program are described in this section. For more
detail, refer to the demo program itself.

Performing DOM Operations with TreeWalker

The W3C DOM Level 2 Traversal and Range specification defines the NodeFilter
and TreeWalker interfaces. The XDK includes implementations of these interfaces.

A node filter is an object that can filter out certain types of Node objects. For example,
it can filter out entity reference nodes but accept element and attribute nodes. You

3-20 Oracle XML Developer's Kit Programmer's Guide

Parsing XML with DOM

create a node filter by implementing the NodeFilter interface and then passing a
Node object to the acceptNode () method. Typically, the acceptNode () method
implementation calls getNodeType () to obtain the type of the node and compares it
to static variables such as ELEMENT_TYPE, ATTRIBUTE_TYPE, and so forth, and then
returns one of the static fields in Table 3-9 based on what it finds.

Table 3-9 Static Fields in the NodeFilter Interface

Method Description

FILTER_ACCEPT Acceptthe node. Navigation methods defined for NodeIterator or
TreeWalker will return this node.

FILTER_REJECT Rejects the node. Navigation methods defined for NodeIterator or
TreeWalker will not return this node. For TreeWalker, the children of
this node will also be rejected. NodeIterators treat this as a synonym for
FILTER_SKIP.

FILTER_SKIP Skips this single node. Navigation methods defined for NodeIterator or
TreeWalker will not return this node. For both NodeIterator and
TreeWalker, the children of this node will still be considered.

You can use TreeWalker objects to traverse a document tree or subtree using the
view of the document defined by their whatToShow flags and filters (if any). You can
use the XMLDocument . createTreeWalker () method to create a TreeWalker
object by specifying the following:

= A root node for the tree
= A flag that governs the type of nodes it should include in the logical view
= A filter for filtering nodes

= A flag that determines whether entity references and their descendents should be
included

Table 3-10 describes useful methods in the org.w3c.dom. traversal.TreeWalker
interface.

Table 3—-10 Useful Methods in the TreeWalker Interface

Method Description

firstChild() Moves the tree walker to the first visible child of the current node and
returns the new node. If the current node has no visible children, then it
returns null and retains the current node.

getRoot () Obtains the root node of the tree walker as specified when it was created.

lastChild() Moves the tree walker to the last visible child of the current node and returns
the new node. If the current node has no visible children, then it returns
null and retains the current node.

nextNode () Moves the tree walker to the next visible node in document order relative to
the current node and returns the new node.

The TreeWalkerSample. java program illustrates some of the things that you can
do with node filters and tree traversals.

The initial four steps of the "Performing Basic DOM Parsing" on page 3-15, from parser
creation to the getDocument () call, are the same as for TreeWalkerSample. java.
The TreeWalkerSample. java program then proceeds by following these steps:

1. Create a node filter object. The acceptNode () method in the ns class, which
implements the NodeFilter interface, invokes getNodeType () to obtain the

Using the XML Parser for Java 3-21

Parsing XML with SAX

type of node. The following code fragment from TreeWalkerSample.java
illustrates this technique:

NodeFilter n2 = new nf();

class nf implements NodeFilter

{
public short acceptNode (Node node)

{
short type = node.getNodeType() ;

if ((type == Node.ELEMENT_NODE) || (type == Node.ATTRIBUTE_NODE))
return FILTER_ACCEPT;
if ((type == Node.ENTITY_REFERENCE_NODE))
return FILTER_REJECT;
return FILTER_SKIP;
}
}

2. Invoke the XMLDocument .createTreeWalker () method to create a tree
walker. The following code fragment from TreeWalkerSample. java uses the
root node of the XMLDocument as the root node of the tree walker and includes all
nodes in the tree:

XMLDocument doc = parser.getDocument () ;

TreeWalker tw =
doc.createTreeWalker (doc.getDocumentElement () ,NodeFilter.SHOW_ALL,n2, true);

3. Obtain the root element of the TreeWalker object. The following code fragment
illustrates this technique:

XMLNode nn = (XMLNode)tw.getRoot () ;

4. Traverse the tree. The following code fragment illustrates how to walk the tree in
document order by calling the TreeWalker .nextNode () method:

while (nn !'= null)

{

System.out.println(nn.getNodeName() + " " + nn.getNodeValue());
nn = (XMLNode)tw.nextNode() ;
}

The following code fragment illustrates how to walk the tree the left depth of the
tree by calling the firstChild () method (you can traverse the right depth of the
tree by calling the 1astChild () method):

while (nn != null)

{
System.out.println(nn.getNodeName() + " " + nn.getNodeValue());

nn = (XMLNode)tw.firstChild();
}

Only some of the features of the demo program are described in this section. For more
detail, refer to the demo program itself.

Parsing XML with SAX

SAX s a standard interface for event-based XML parsing. This section contains the
following topics:

3-22 Oracle XML Developer's Kit Programmer's Guide

Parsing XML with SAX

= Using the SAX API
s Performing Basic SAX Parsing
s Performing Basic SAX Parsing with Namespaces

s Performing SAX Parsing with XMLTokenizer

Using the SAX API

The SAX API, which is released in a Level 1 and Level 2 versions, is a set of interfaces
and classes. We can divide the API into the following categories:

= Interfaces implemented by the Oracle XML parser.
s Interfaces that you must implement in your application. The SAX 2.0 interfaces are
listed in Table 3-11.

Table 3—-11 SAX2 Handler Interfaces

Interface Description

ContentHandler Receives notifications from the XML parser. The major event-handling
methods are startDocument (), endDocument (), startElement (),
and endElement () when it recognizes an XML tag. This interface also
defines the methods characters () and processingInstruction (),
which are invoked when the parser encounters the text in an XML
element or an inline processing instruction.

DeclHandler Receives notifications about DTD declarations in the XML document.

DTDHandler Processes notations and unparsed (binary) entities.

EntityResolver Needed to perform redirection of URIs in documents. The
resolveEntity () method is invoked when the parser must identify
data identified by a URI.

ErrorHandler Handles parser errors. The program invokes the methods error (),
fatalError (), and warning () in response to various parsing errors.

LexicalHandler Receives notifications about lexical information such as comments and
CDATA section boundaries.

s Standard SAX classes.

= Additional Java classes in org.xml. sax.helper. The SAX 2.0 helper classes are
as follows:

- AttributeImpl, which makes a persistent copy of an AttributeList

- DefaultHandler, which is a base class with default implementations of the
SAX2 handler interfaces listed in Table 3-11

- LocatorImpl, which makes a persistent snapshot of a Locator's values at
specified point in the parse

- NamespaceSupport, which adds support for XML namespaces

- XMLFilterImpl, whichis a base class used by applications that need to
modify the stream of events

- XMLReaderFactory, which supports loading SAX parsers dynamically
= Demonstration classes in the nul package.

Figure 3-5 illustrates how to create a SAX parser and use it to parse an input
document.

Using the XML Parser for Java 3-23

Parsing XML with SAX

Figure 3-5 Using the SAXParser Class

XML Parser for Java: SAXParser()

file,
string buffer,
or URL
xml input

Methods

- - - setValidationMode

- setPreserveWhitespace
- setDoctype

- setBaseURL

- setContentHandler

- setDTDHandler

- setEntity Resolver

- setErrorHandler

new
SAXParser()

Callback
methods

The basic stages for parsing an input XML document with SAX are as follows:

1. Create a SAXParser object and configure its properties (see Table 3-5 for useful
property methods). For example, set the validation mode of the parser.

2. Instantiate an event handler. The program should provide implementations of the
handler interfaces in Table 3-11.

3. Register the event handlers with the parser. You must register your event handlers
with the parser so that it knows which methods to invoke when a given event
occurs. Table 3-12 lists registration methods available in SAXParser.

Table 3—-12 SAXParser Methods for Registering Event Handlers

Method Use this method to ...

setContentHandler () Register a content event handler with an application. The
org.xml.sax.DefaultHandler class implements the
org.xml.sax.ContentHandler interface. Applications can
register a new or different handler in the middle of a parse; the
SAX parser must begin using the new handler immediately.

setDTDHandler () Register a DTD event handler. If the application does not register
a DTD handler, all DTD events reported by the SAX parser are
silently ignored. Applications may register a new or different
handler in the middle of a parse; the SAX parser must begin using
the new handler immediately.

setErrorHandler () Register an error event handler with an application. If the
application does not register an error handler, all error events
reported by the SAX parser are silently ignored; however, normal
processing may not continue. It is highly recommended that all
SAX applications implement an error handler to avoid
unexpected bugs. Applications may register a new or different
handler in the middle of a parse; the SAX parser must begin using
the new handler immediately.

setEntityResolver () Register an entity resolver with an application. If the application
does not register an entity resolver, the XML.Reader performs its
own default resolution. Applications may register a new or
different resolver in the middle of a parse; the SAX parser must
begin using the new resolver immediately.

3-24 Oracle XML Developer's Kit Programmer's Guide

Parsing XML with SAX

Parse the input document with the SAXParser.parse () method. All SAX
interfaces are assumed to be synchronous: the parse method must not return until
parsing is complete. Readers must wait for an event-handler callback to return
before reporting the next event.

When the SAXParser.parse () method is called, the program invokes one of
several callback methods implemented in the application. The methods are
defined by the ContentHandler, ErrorHandler, DTDHandler, and
EntityResolver interfaces implemented in the event handler. For example, the
application can call the startElement () method when a start element is
encountered.

Performing Basic SAX Parsing

The sAXSample. java program illustrates the basic steps of SAX parsing. The
SAXSample class extends HandlerBase. The program receives an XML file as input,
parses it, and prints information about the contents of the file.

The program follows these steps:

1.

Store the Locator. The Locator associates a SAX event with a document
location. The SAX parser provides location information to the application by
passing a Locator instance to the setDocumentLocator () method in the
content handler. The application can use the object to obtain the location of any
other content handler event in the XML source document. The following code
fragment from SAXSample. java illustrates this technique:

Locator locator;

Instantiate a new event handler. The following code fragment from
SAXSample. java illustrates this technique:

SAXSample sample = new SAXSample();

Instantiate the SAX parser and configure it. The following code fragment from
SAXSample. java sets the mode to DTD validation:

Parser parser = new SAXParser();
((SAXParser)parser) .setValidationMode (SAXParser .DTD_VALIDATION) ;

Register event handlers with the SAX parser. You can use the registration methods
in the SAXParser class, but you must implement the handler interfaces yourself.
The following code fragment registers the handlers:

parser.setDocumentHandler (sample) ;
parser.setEntityResolver (sample) ;
parser.setDTDHandler (sample) ;
parser.setErrorHandler (sample) ;

The following code shows some of the DocumentHandler interface
implementation:

public void setDocumentLocator (Locator locator)

{
System.out.println("SetDocumentLocator:");
this.locator = locator;

}

public void startDocument ()

{

System.out.println("StartDocument") ;

}

Using the XML Parser for Java 3-25

Parsing XML with SAX

public void endDocument () throws SAXException
{
System.out.println("EndDocument") ;
}
public void startElement (String name, AttributelList atts)
throws SAXException

System.out.println("StartElement: "+name) ;
for (int i=0;i<atts.getLength();i++)
{
String aname = atts.getName(i);
String type = atts.getType(i);
String value = atts.getValue(i);
System.out.println(" "+aname+" ("+type+") "+"="+value) ;

The following code shows the EntityResolver interface implementation:

public InputSource resolveEntity (String publicId, String systemId)
throws SAXException

System.out.println("ResolveEntity:"+publicId+" "+systemId);
System.out.println("Locator:"+locator.getPublicId()+" locator.getSystemId()+
" "+locator.getLineNumber ()+" "+locator.getColumnNumber());

return null;

The following code shows the DTDHandler interface implementation:

public void notationDecl (String name, String publicId, String systemId)
{
System.out.println("NotationDecl:"+name+" "+publicId+" "+systemId);
}
public void unparsedEntityDecl (String name, String publicId,
String systemId, String notationName)

System.out.println("UnparsedEntityDecl: "+name + " "+publicId+" "+
systemId+" "+notationName);

The following code shows the ErrorHandler interface implementation:

public void warning (SAXParseException e)
throws SAXException

System.out.println("Warning: "+e.getMessage());
}
public void error (SAXParseException e)
throws SAXException

throw new SAXException(e.getMessage());
}
public void fatalError (SAXParseException e)
throws SAXException

System.out.println("Fatal error");
throw new SAXException(e.getMessage());

3-26 Oracle XML Developer's Kit Programmer's Guide

Parsing XML with SAX

5. Parse the input XML document. The following code fragment converts the
document to a URL and then parses it:

parser.parse (DemoUtil.createURL(argv[0]).toString());

Performing Basic SAX Parsing with Namespaces

This section discusses the SAX2Namespace . java sample program, which
implements an event handler named XMLDefaul tHandler as a subclass of the
org.xml.sax.helpers.DefaultHandler class. The easiest way to implement the
ContentHandler interface is to extend the
org.xml.sax.helpers.DefaultHandler class. The DefaultHandler class
provides some default behavior for handling events, although typically the behavior is
to do nothing.

The SAX2Namespace. java program overrides methods for only the events that it
cares about. Specifically, the XMLDefaultHandler class implements only two
methods: startElement () and endElement (). The startElement event is
triggered whenever SAXParser encounters a new element within the XML document.
When this event is triggered, the startElement () method prints the namespace
information for the element.

The SAX2Namespace. java sample program follows these steps:

1. Instantiate a new event handler of type DefaultHandler. The following code
fragment illustrates this technique:

DefaultHandler defHandler = new XMLDefaultHandler();

2. Create a SAX parser and set its validation mode. The following code fragment
from SAXSample. java sets the mode to DTD validation:

Parser parser = new SAXParser();
((SAXParser)parser) .setValidationMode (SAXParser.DTD_VALIDATION) ;

3. Register event handlers with the SAX parser. The following code fragment
registers handlers for the input document, the DTD, entities, and errors:

parser.setContentHandler (defHandler) ;
parser.setEntityResolver (defHandler) ;
parser.setDTDHandler (defHandler) ;
parser.setErrorHandler (defHandler) ;

The following code shows the XMLDefaultHandler implementation. The
startElement () and endElement () methods print the qualified name, local
name, and namespace URI for each element (refer to Table 3-7 for an explanation
of these terms):

class XMLDefaultHandler extends DefaultHandler
{
public void XMLDefaultHandler () {}
public void startElement (String uri, String localName,
String gName, Attributes atts)
throws SAXException
{
System.out.println("ELEMENT Qualified Name:" + gName);

System.out.println("ELEMENT Local Name :" + localName) ;
System.out.println("ELEMENT Namespace "+ ouri);
for (int i=0; i<atts.getLength(); i++)

{

Using the XML Parser for Java 3-27

Parsing XML with SAX

gName = atts.getQName (i) ;
localName = atts.getLocalName (i) ;
uri = atts.getURI(i);

System.out.println(" ATTRIBUTE Qualified Name ;" + gName) ;
System.out.println(" ATTRIBUTE Local Name :" + localName) ;
System.out.println(" ATTRIBUTE Namespace "+ uri);

// You can get the type and value of the attributes either
// by index or by the Qualified Name.

String type = atts.getType (gName) ;
String value = atts.getValue (gName) ;

System.out.println(" ATTRIBUTE Type :" + type);
System.out.println(" ATTRIBUTE Value :" + value);

System.out.println();

}
public void endElement (String uri, String localName,
String gName) throws SAXException

System.out.println("ELEMENT Qualified Name:" + gName);
System.out.println("ELEMENT Local Name :" + localName) ;
System.out.println("ELEMENT Namespace "+ ouri);

4, Parse the input XML document. The following code fragment converts the
document to a URL and then parses it:

parser.parse (DemoUtil.createURL(argv[0]).toString());

Performing SAX Parsing with XMLTokenizer

You can create a simple SAX parser as a instance of the XMLTokenizer class and use
the parser to tokenize the input XML. Table 3-13 lists useful methods in the class.

Table 3-13 XMLTokenizer Methods

Method Description

setToken () Register a new token for XML tokenizer.
setErrorStream() Register a output stream for errors
tokenize () Tokenizes the input XML

SAX parsers with Tokenizer features must implement the XML Token interface. The
callback method for XMLToken is token (), which receives an XML token and its
corresponding value and performs an action. For example, you can implement
token () so that it prints the token name followed by the value of the token.

The Tokenizer. java program accepts an XML document as input, parses it, and
prints a list of the XML tokens. The program implements a doParse () method that
does the following;:

1. Create a URL from the input XML stream:

URL url = DemoUtil.createURL(arg);

3-28 Oracle XML Developer's Kit Programmer's Guide

Parsing XML with JAXP

Create an XMLTokenizer parser as follows:

parser = new XMLTokenizer ((XMLToken)new Tokenizer());

Register an output error stream as follows:

parser.setErrorStream (System.out);
Register tokens with the parser. The following code fragment from
Tokenizer.java shows just some of the registered tokens:

STagName, true);
EmptyElemTag, true);
STag, true);

ETag, true);
ETagName, true);

parser.setToken (
parser.setToken (
parser.setToken (
parser.setToken (
parser.setToken (

Tokenize the XML document as follows:

parser.tokenize (url);

The token () callback method determines the action to take when an particular
token is encountered. The following code fragment from Tokenizer.java
shows some of the implementation of this method:

public void token (int token, String value)

{

switch

{
case XMLToken.

(token)

STag:

System.out.println ("STag: " + value);
break;

case XMLToken.ETag:
System.out.println ("ETag: " + value);

break;

case XMLToken.
System.out.
break;

case XMLToken.
System.out.
break;

EmptyElemTag:
println ("EmptyElemTag: " + value);
AttValue:

println ("AttValue: " + value);

default:
break;

Parsing XML with JAXP

JAXP enables you to use the SAX and DOM parsers and the XSLT processor in your
Java program. This section contains the following topics:

Using the JAXP API
Parsing with JAXP

Performing Basic Transformations with JAXP

Using the XML Parser for Java 3-29

Parsing XML with JAXP

Using the JAXP

API

The JAXP APIs, which are listed in Table 3-14, have an API structure consisting of
abstract classes that provide a thin layer for parser pluggability. Oracle implemented
JAXP based on the Sun Microsystems reference implementation.

Table 3-14 JAXP Packages

Package Description

javax.xml .parsers Provides standard APIs for DOM 2.0 and SAX 1.0
parsers. The package contains vendor-neutral factory
classes that give you a SAXParser and a
DocumentBuilder. DocumentBuilder creates a
DOM-compliant Document object.

javax.xml.transform Defines the generic APIs for processing XML
transformation and performing a transformation from a
source to a result.

javax.xml.transform.dom Provides DOM-specific transformation APIs.

javax.xml.transform.sax Provides SAX2-specific transformation APIs.

javax.xml.transform.stream | Provides stream- and URI- specific transformation APIs.

Using the SAX API Through JAXP

You can rely on the factory design pattern to create new SAX parser engines with
JAXP. Figure 3-6 illustrates the basic process.

Figure 3—-6 SAX Parsing with JAXP

x
S

I
!

1 I Business
| Events =¥ Document Handler | Logic
SAX | Error Handler |
Parser

]

| DTD Handler |
I

| Entity Resolver |
I

*

SAX
Parser
Factory

The basic steps for parsing with SAX through JAXP are as follows:

1.

2
3
4.
5

Contfigure the factory.

Create a new SAX parser factory with the SAXParserFactory class.

Create a new SAX parser (SAXParser) object from the factory.
Set the event handlers for the SAX parser.
Parse the input XML documents.

Using the DOM API Through JAXP

You can rely on the factory design pattern to create new DOM document builder
engines with JAXP. Figure 3-7 illustrates the basic process.

3-30 Oracle XML Developer's Kit Programmer's Guide

Parsing XML with JAXP

Figure 3-7 DOM Parsing with JAXP

XML DOM
— Tree -
— Business
—r—> —> —> Logic
— DOM
Document
Builder

| Error Handler |
I

| Entity Resolver |
|

*

Document
Builder
Factory

The basic steps for parsing with DOM through JAXP are as follows:

1.

2
3
4.
5

Create a new DOM parser factory. with the DocumentBuilderFactory class.
Configure the factory.

Create a new DOM builder (DocumentBuilder) object from the factory.

Set the error handler and entity resolver for the DOM builder.

Parse the input XML documents.

Transforming XML Through JAXP
The basic steps for transforming XML through JAXP are as follows:

1.

Create a new transformer factory. Use the TransformerFactory class.

2. Configure the factory.
3. Create a new transformer from the factory and specify an XSLT stylesheet.
4. Configure the transformer.
5. Transform the document.
Parsing with JAXP

The JAXPExamples . java program illustrates the basic steps of parsing with JAXP.
The program implements the following methods and uses them to parse and perform
additional processing on XML files in the /jaxp directory:

basic()

identity ()

namespaceURI ()
templatesHandler ()
contentHandler2contentHandler ()
contentHandler2DOM/()

reader ()

xmlFilter ()

xmlFilterChain ()

Using the XML Parser for Java 3-31

Parsing XML with JAXP

The program creates URLs for the jaxpone.xml and jaxpone.xsl sample XML
files and then calls the preceding methods in sequence. The basic design of the demo is
as follows (to save space only the basic () method is shown):

public class JAXPExamples

{

public static void main(String argvl[])
throws TransformerException, TransformerConfigurationException,
IOException, SAXException, ParserConfigurationException,
FileNotFoundException

{
try {

URL xmlURL = createURL("jaxpone.xml") ;

String xmlID = xmlURL.toString();

URL xslURL = createURL("jaxpone.xsl");

String xslID = xslURL.toString();

//

System.out.println("--- basic ---");

basic(xmlID, xslID);

System.out.println();

} catch(Exception err) ({
err.printStackTrace();

}
//
public static void basic(String xmlID, String xslID)
throws TransformerException, TransformerConfigurationException

TransformerFactory tfactory = TransformerFactory.newInstance();

Transformer transformer = tfactory.newTransformer (new StreamSource(xslID));
StreamSource source = new StreamSource (xmlID) ;
transformer.transform(source, new StreamResult (System.out));

The reader () method in JAXPExamples . java program shows a simple technique
for parsing an XML document with SAX. It follows these steps:

1.

Create a new instance of a TransformerFactory and then castitto a
SAXTransformerFactory. The application can use the SAX factory to configure
and obtain SAX parser instances. For example:

TransformerFactory tfactory = TransformerFactory.newInstance();
SAXTransformerFactory stfactory = (SAXTransformerFactory)tfactory;

Create an XML reader by creating a StreamSource object from a stylesheet and
passing it to the factory method newxMLFilter (). This method returns an
XMLFilter object that uses the specified Source as the transformation
instructions. For example:

URL xslURL = createURL("jaxpone.xsl");
String xslID = xslURL.toString();

StreamSource streamSource = new StreamSource(xslID);
XMLReader reader = stfactory.newXMLFilter (streamSource) ;

Create content handler and register it with the XML reader. The following example
creates an instance of the class oraContentHandler, which is created by
compiling the oraContentHandler . java program in the demo directory:

3-32 Oracle XML Developer's Kit Programmer's Guide

Parsing XML with JAXP

ContentHandler contentHandler = new oraContentHandler();
reader.setContentHandler (contentHandler) ;

The following code fragment shows some of the implementation of the
oraContentHandler class:

public class oraContentHandler implements ContentHandler
{
private static final String TRADE_MARK = "Oracle 9i ";

public void setDocumentLocator (Locator locator)
{

System.out.println(TRADE_MARK + "- setDocumentLocator");
}

public void startDocument ()
throws SAXException

{
System.out.println(TRADE_MARK + "- startDocument");
}

public void endDocument ()
throws SAXException

{
System.out.println(TRADE_MARK + "- endDocument");
}

4. Parse the input XML document by passing the InputSource to the
XMLReader .parse () method. For example:

InputSource is = new InputSource (xmlID);
reader.parse(is);

Performing Basic Transformations with JAXP

You can use JAXP to transform any class of the interface Source into a class of the
interface Result. Table 3-15 shows some sample transformations.

Table 3-15 Transforming Classes with JAXP

Use JAXP to transform this class ... Into this class. ..
DOMSource DOMResult
StreamSource StreamResult
SAXSource SAXResult

These transformations accept the following types of input:

= XML documents

= Stylesheets

s The ContentHandler class defined in oraContentHandler. java

For example, you can use the identity () method to perform a transformation in
which the output XML document is the same as the input XML document. You can use
the xml1FilterChain () method to apply three stylesheets in a chain.

The basic () method shows how to perform a basic XSLT transformation. The
method follows these steps:

Using the XML Parser for Java 3-33

Compressing XML

1. Create a new instance of a TransformerFactory. For example:
TransformerFactory tfactory = TransformerFactory.newInstance();
2. Create a new XSL transformer from the factory and specify the stylesheet to use

for the transformation. The following example specifies the jaxpone . xs1
stylesheet:

URL xslURL = createURL("jaxpone.xsl");
String xslID = xslURL.toString();

Transformer transformer = tfactory.newTransformer (new StreamSource(xslID));
3. Set the stream source to the input XML document. The following fragment from

the basic () method sets the stream source to jaxpone.xml:

URL xmlURL = createURL("jaxpone.xml");
String xmlID = xmlURL.toString();

StreamSource source = new StreamSource (xmlID);
4. Transform the document from a StreamSource to a StreamResult. The

following example transforms a StreamSource into a StreamResult:

transformer.transform(source, new StreamResult (System.out));

Compressing XML

The Oracle XDK enables you to use SAX or DOM to parse XML and then write the
parsed data to a compressed binary stream. You can then reverse the process and
reconstruct the XML data. This section contains the following topics:

s Compressing and Decompressing XML from DOM
s Compressing and Decompressing XML from SAX

Compressing and Decompressing XML from DOM

The DOMCompression. java and DOMDeCompression. java programs illustrate
the basic steps of DOM compression and decompression. The most important DOM
compression methods are the following;:

= XMLDocument.writeExternal () saves the state of the object by creating a
binary compressed stream with information about the object.

s XMLDocument.readExternal () reads the information written in the
compressed stream by the writeExternal () method and restores the object.

Compressing a DOM Object

The basic technique for serialization is create an XMLDocument by parsing an XML
document, initialize an ObjectOutputStream, and then call
XMLDocument .writeExternal () to write the compressed stream.

The DOMCompression. java program follows these steps:

1. Create a DOM parser, parse an input XML document, and obtain the DOM
representation. This technique is described in "Performing Basic DOM Parsing" on
page 3-15. The following code fragment from DOMCompression. java illustrates
this technique:

public class DOMCompression

3-34 Oracle XML Developer's Kit Programmer's Guide

Compressing XML

static OutputStream out = System.out;
public static void main(String[] args)
{
XMLDocument doc = new XMLDocument () ;
DOMParser parser = new DOMParser();
try
{
parser.setValidationMode (XMLParser.SCHEMA_VALIDATION) ;
parser.setPreservellhitespace (false) ;
parser.retainCDATASection (true) ;
parser.parse(createURL(args([0]));
doc = parser.getDocument () ;

2. Create a FileOutputStreamand wrap it in an ObjectOutputStream for
serialization. The following code fragment creates the xm1 . ser output file:

OutputStream os = new FileOutputStream("xml.ser");
ObjectOutputStream oos = new ObjectOutputStream(os);

3. Serialize the object to the file by calling XMLDocument .writeExternal (). This
method saves the state of the object by creating a binary compressed stream with
information about this object. The following statement illustrates this technique:

doc.writeExternal (oos) ;

Decompressing a DOM Object

The basic technique for decompression is to create an ObjectInputStream object
and then call XMLDocument . readExternal () to read the compressed stream.The
DOMDeCompression. java program follows these steps:

1. Create a file input stream for the compressed file and wrap it in an
ObjectInputStream. The following code fragment from
DOMDeCompression. java creates a FileInputStream from the compressed
file created in the previous section:

InputStream is;

ObjectInputStream ois;

is = new FileInputStream("xml.ser");
0ois = new ObjectInputStream(is);

2. Create a new XML document object to contain the decompressed data. The
following code fragment illustrates this technique:
XMLDocument serializedDoc = null;
serializedDoc = new XMLDocument () ;

3. Read the compressed file by calling XMLDocument . readExternal (). The
following code fragment read the data and prints it to System. out:

serializedDoc.readExternal (ois);
serializedDoc.print (System.out) ;

Compressing and Decompressing XML from SAX

The sAXCompression. java program illustrates the basic steps of parsing a file with
SAX, writing the compressed stream to a file, and then reading the serialized data
from the file. The important classes are as follows:

Using the XML Parser for Java 3-35

Compressing XML

s CXMLHandlerBase is a SAX Handler that compresses XML data based on SAX
events. To use the SAX compression, implement this interface and register with the
SAX parser by calling Parser.setDocumentHandler ().

s CXMLParser is an XML parser that regenerates SAX events from a compressed
stream.

Compressing a SAX Object

The basic technique for serialization is to register a CXMLHandlerBase handler with a
SAX parser, initialize an ObjectOutputStream, and then parse the input XML. The
SAXCompression. java program follows these steps:

1. Create a FileOutputStreamand wrap it in an ObjectOutputStream. The
following code fragment from SAXCompression. java creates the xml . ser file:

String compFile = "xml.ser";
FileOutputStream outStream = new FileOutputStream(compFile) ;
ObjectOutputStream out = new ObjectOutputStream(outStream) ;

2. Create the SAX event handler. The CXMLHandlerBase class implements the
ContentHandler, DTDHandler, EntityResolver, and ErrorHandler
interfaces. The following code fragment illustrates this technique:

CXMLHandlerBase cxml = new CXMLHandlerBase (out);

3. Create the SAX parser. The following code fragment illustrates this technique:
SAXParser parser = new SAXParser();

4. Configure the SAX parser. The following code fragment sets the content handler
and entity resolver, and also sets the validation mode:

parser.setContentHandler (cxml) ;
parser.setEntityResolver (cxml) ;
parser.setValidationMode (XMLConstants.NONVALIDATING) ;

Note that oracle.xml . comp.CXMLHandlerBase implements both
DocumentHandler and ContentHandler interfaces, but use of the SAX 2.0
ContentHandler interface is preferred.

5. Parse the XML. The program writes the serialized data to the
ObjectoutputStream. The following code fragment illustrates this technique:

parser.parse(url);

Decompressing a SAX Object

The basic technique for deserialization of a SAX object is to create a SAX compression
parser with the CXMLParser class, set the content handler for the parser, and then
parse the compressed stream.

The sAXDeCompression. java program follows these steps:

1. Create a SAX event handler. The SampleSAXHandler . java program creates a
handler for use by SAXDeCompression. java. The following code fragment
from SAXDeCompression. java creates handler object:

SampleSAXHandler xmlHandler = new SampleSAXHandler();

2. Create the SAX parser by instantiating the CXMLParser class. This class
implements the regeneration of XML documents from a compressed stream by

3-36 Oracle XML Developer's Kit Programmer's Guide

Tips and Techniques for Parsing XML

generating SAX events from them. The following code fragment illustrates this
technique:

CXMLParser parser = new CXMLParser();

Set the event handler for the SAX parser. The following code fragment illustrates
this technique:

parser.setContentHandler (xmlHandler) ;

Parse the compressed stream and generates the SAX events. The following code
receives a filename from the command line and parses the XML:

parser.parse(args[0]);

Tips and Techniques for Parsing XML

This section contains the following topics:

Extracting Node Values from a DOM Tree
Merging Documents with appendChild()
Parsing DTDs

Handling Character Sets with the XML Parser

Extracting Node Values from a DOM Tree

You can use the selectNodes () method in the XMLNode class to extract content
from a DOM tree or subtree based on the select patterns allowed by XSL. You can use
the optional second parameter of selectNodes () to resolve namespace prefixes, that
is, to return the expanded namespace URL when given a prefix. The XMLElement
class implements NSResolver, so a reference to an XMLElement object can be sent as
the second parameter. XMLElement resolves the prefixes based on the input
document. You can use the NSResolver interface if you need to override the
namespace definitions.

The sample code in Example 34 illustrates how to use selectNodes ().

Example 3—4 Extracting Contents of a DOM Tree with selectNodes()

//

// selectNodesTest.java

//

import java.io.*;

import oracle.xml.parser.v2.*;
import org.w3c.dom.Node;
import org.w3c.dom.Element;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;

public class selectNodesTest

{

public static void main(String[] args)

{

throws Exception

// supply an xpath expression

String pattern = "/family/member/text()";

// accept a filename on the command line

// run the program with $ORACLE_HOME/xdk/demo/java/parser/common/family.xml

Using the XML Parser for Java 3-37

Tips and Techniques for Parsing XML

String file = args[0];

if (args.length == 2)
pattern = args[1l];

DOMParser dp = new DOMParser () ;

dp.parse (DemoUtil.createURL(file)); // include createURL from DemoUtil
XMLDocument xd = dp.getDocument () ;
XMLElement element = (XMLElement) xd.getDocumentElement () ;
NodeList nl = element.selectNodes (pattern, element);
for (int i = 0; i1 < nl.getLength(); i++)
{
System.out.println(nl.item(i).getNodeValue());

} // end for

} // end main

} // end selectNodesTest

To test the program, create a file with the code in Example 3—4 and then compile it in
the SORACLE_HOME/xdk/demo/java/parser/common directory. Pass the filename
family.xml to the program as a parameter to traverse the <family> tree. The
output should be as follows:

% java selectNodesTest family.xml
Sarah

Bob

Joanne

Jim

Now run the following to determine the values of the memberid attributes of all
<member> elements in the document:

% java selectNodesTest family.xml //member/@memberid
ml
m2
m3
mé

Merging Documents with appendChild()

Suppose that you want to write a program so that a user can fill in a client-side Java
form and obtain an XML document. Suppose that your Java program contains the
following variables of type String:

String firstname = "Gianfranco";
String lastname = "Pietraforte";

You can use either of the following techniques to insert this information into an XML
document:

» Create an XML document in a string and then parse it. For example:

String xml = "<person><first>"+firstname+"</first>"+
"<last>"+lastname+"</last></person>";

DOMParser d = new DOMParser();

d.parse(new StringReader (xml));

Document xmldoc = d.getDocument () ;

s Use DOM APIs to construct an XML document, creating elements and then
appending them to one another. For example:

3-38 Oracle XML Developer's Kit Programmer's Guide

Tips and Techniques for Parsing XML

Parsing DTDs

Document xmldoc = new XMLDocument () ;

Element el = xmldoc.createElement ("person");
xmldoc.appendChild(el) ;

Element e2 = xmldoc.createElement ("firstname");
el.appendChild(e2);

Text t = xmldoc.createText (Larry) ;
e2.appendChild(t);

Note that you can only use the second technique on a single DOM tree. For example,
suppose that you write the code snippet in Example 3-5.

Example 3-5 Incorrect Use of appendChild()

XMLDocument xmldocl = new XMLDocument () ;
XMLElement el = xmldocl.createElement ("person");
XMLDocument xmldoc2 = new XMLDocument () ;
XMLElement e2 = xmldoc2.createElement (
el.appendChild(e2);

;
"firstname") ;

The preceding code raises a DOM exception of WRONG_DOCUMENT_ERR when calling
XMLElement . appendChild () because the owner document of el is xmldocl
whereas the owner of e2 is xmldoc2. The appendChild () method only works
within a single tree, but the code in Example 3-5 uses two different trees.

You can use the XMLDocument . importNode () method, introduced in DOM 2, and
the XMLDocument . adoptNode () method, introduced in DOM 3, to copy and paste a
DOM document fragment or a DOM node across different XML documents. The
commented lines in Example 3-6 show how to perform this task.

Example 3-6 Merging Documents with appendChild

XMLDocument docl = new XMLDocument () ;

XMLElement elementl = docl.createElement ("person") ;
XMLDocument doc2 = new XMLDocument () ;

XMLElement element2 = doc2.createElement ("firstname");
// element2 = docl.importNode (element2) ;

// element2 = docl.adoptNode(element2) ;
elementl.appendChild(element2) ;

This section discusses techniques for parsing DTDs. It contains the sections:
» Loading External DTDs
s Caching DTDs with setDoctype

Loading External DTDs

If you call the DOMParser .parse () method to parse the XML Document as an
InputStream, then use the DOMParser. setBaseURL () method to recognize
external DTDs within your Java program. This method points to a location where the
DTDs are exposed.

The following procedure describes how to load and parse a DTD:

1. Load the DTD as an InputStream. For example, assume that you want to
validate documents against the /mydir/my.dtd external DTD. You can use the
following code:

InputStream is = MyClass.class.getResourceAsStream("/mydir/my.dtd");

Using the XML Parser for Java 3-39

Tips and Techniques for Parsing XML

This code opens . /mydir/my.dtd in the first relative location in the CLASSPATH
where it can be found, including the JAR file if it is in the CLASSPATH.

2. Create a DOM parser and set the validation mode. For example, use this code:

DOMParser d = new DOMParser();
d.setValidationMode (DTD_VALIDATION) ;

3. Parse the DTD. The following example passes the InputStream object to the
DOMParser .parseDTD () method

d.parseDTD(is, "rootelementname");

4. Get the document type and then set it. The getDoctype () method obtains the
DTD object and the setDoctype () method sets the DTD to use for parsing. The
following example illustrates this technique:

d.setDoctype (d.getDoctype()) ;

The following code demonstrates an alternative technique. You can invoke the
parseDTD () method to parse a DTD file separately and get a DTD object:

d.parseDTD (new FileReader (/mydir/my.dtd));
DTD dtd = d.getDoctype();
parser.setDoctype (dtd) ;

5. Parse the input XML document. For example, the following code parses
mydoc.xml:

d.parse("mydoc.xml") ;

Caching DTDs with setDoctype

The XML parser for Java provides for DTD caching in validation and nonvalidation
modes through the DOMParser . setDoctype () method. After you set the DTD with
this method, the parser caches this DTD for further parsing. Note that DTD caching is
optional and is not enabled automatically.

Assume that your program must parse several XML documents with the same DTD.
After you parse the first XML document, you can obtain the DTD from the parser and
set it as in the following example:

DOMParser parser = new DOMParser();
DTD dtd = parser.getDoctype();
parser.setDoctype (dtd) ;

The parser caches this DTD and uses it for parsing subsequent XML documents.
Example 3-7 provides a more complete illustration of how you can invoke
DOMParser .setDoctype () to cache the DTD.

Example 3-7 DTDSample.java
/ * %
* DESCRIPTION

* This program illustrates DTD caching.
*/

import java.net.URL;

import java.io.*;

import org.xml.sax.InputSource;
import oracle.xml.parser.v2.*;

3-40 Oracle XML Developer's Kit Programmer's Guide

Tips and Techniques for Parsing XML

public class DTDSample
{
static public void main(String[] args)
{
try
{
if (args.length != 3)

System.err.println("Usage: java DTDSample dtd rootelement xmldoc");
System.exit (1) ;

// Create a DOM parser
DOMParser parser = new DOMParser();

// Configure the parser
parser.setErrorStream(System.out) ;
parser.showWarnings (true) ;

// Create a FileReader for the DTD file specified on the command
// line and wrap it in an InputSource

FileReader r = new FileReader (args[0]);

InputSource inSource = new InputSource(r);

// Create a URL from the command-line argument and use it to set the
// system identifier
inSource.setSystemId(DemoUtil.createURL(args[0]).toString());

// Parse the external DTD from the input source. The second argument is
// the name of the root element.

parser.parseDTD(inSource, args([1]);

DTD dtd = parser.getDoctype();

// Create a FileReader object from the XML document specified on the
// command line
r = new FileReader (args[2]);

// Wrap the FileReader in an InputSource, create a URL from the filename,
// and set the system identifier

inSource = new InputSource(r);
inSource.setSystemId(DemoUtil.createURL(args([2]).toString());

// kkhkkkkkkkkkkkkdkkkxkk

parser.setDoctype (dtd) ;

// Kkhkkkkxkkhkkhkkkhkxhkxxxhk

parser.setValidationMode (DOMParser.DTD_VALIDATION) ;
// parser.setAttribute (DOMParser.USE_DTD_ONLY_FOR_VALIDATION, Boolean.TRUE) ;
parser.parse (inSource) ;

// Obtain the DOM tree and print
XMLDocument doc = parser.getDocument () ;
doc.print (new PrintWriter (System.out));

}

catch (Exception e)

{
System.out.println(e.toString());

Using the XML Parser for Java 3-41

Tips and Techniques for Parsing XML

}

If the cached DTD Object is used only for validation, then set the

DOMParser .USE_DTD_ONLY_FOR_VALIDATION attribute. Otherwise, the XML
parser will copy the DTD object and add it to the resulting DOM tree. You can set the
parser as follows:

parser.setAttribute (DOMParser.USE_DTD_ONLY_FOR_VALIDATION, Boolean.TRUE) ;

Handling Character Sets with the XML Parser

This section contains the following topics:

» Detecting the Encoding of an XML File on the Operating System
s Detecting the Encoding of XML Stored in an NCLOB Column

= Writing an XML File in a Nondefault Encoding

= Working with XML in Strings

s Parsing XML Documents with Accented Characters

= Handling Special Characters in Tag Names

Detecting the Encoding of an XML File on the Operating System

When reading an XML file stored on the operating system, do not use the
FileReader class. Instead, use the XML parser to detect the character encoding of the
document automatically. Given a binary FileInputStream with no external
encoding information, the parser automatically determines the character encoding
based on the byte order mark and encoding declaration of the XML document. You
can parse any well-formed document in any supported encoding with the sample code
in the AutoDetectEncoding. java demo. This demo is located in
$ORACLE_HOME/xdk/demo/java/parser/dom.

Note: Include the proper encoding declaration in your document
according to the specification. setEncoding () cannot set the
encoding for your input document. Rather, it is used with
oracle.xml.parser.v2.XMLDocument to set the correct encoding
for printing.

Detecting the Encoding of XML Stored in an NCLOB Column

Suppose that you load XML into the an NCLOB column of a database using UTF-8
encoding. The XML contains two UTF-8 multibyte characters:

G(0xc2,0x82)otingen, Br (0xc3,0xbc)ck W

You write a Java stored function that does the following:

1. Uses the default connection object to connect to the database.
Runs a SELECT query.

Obtains the oracle. jdbc.OracleResultSet object.
Calls the OracleResultSet.getCLOB () method.

Calls the getAsciiStream() method on the CLOB object.

o a0 ~ w N

Executes the following code to get the XML into a DOM object:

3-42 Oracle XML Developer's Kit Programmer's Guide

Tips and Techniques for Parsing XML

DOMParser parser = new DOMParser();
parser.setPreserveWhitespace (true) ;

parser.parse(istr);

// istr getAsciiStream XMLDocument xmldoc = parser.getDocument();

The program throws an exception stating that the XML contains an invalid UTF-8
encoding even though the character (0xc2, 0x82) is valid UTE-8. The problem is that
the character can be distorted when the program calls the
OracleResultSet.getAsciiStream() method. To solve this problem, invoke the
getUnicodeStream() and getBinaryStream () methods instead of
getAsciiStream().If this technique does not work, then try to print the characters
to make sure that they are not distorted before they are sent to the parser in when you
call DOMParser .parse (istr).

Writing an XML File in a Nondefault Encoding

You should not use the FileWriter class when writing XML files because it depends
on the default character encoding of the runtime environment. The output file can
suffer from a parsing error or data loss if the document contains characters that are not
available in the default character encoding.

UTE-8 encoding is popular for XML documents, but UTF-8 is not usually the default
file encoding of Java. Using a Java class in your program that assumes the default file
encoding can cause problems. To avoid these problems, you can use the technique
illustrated in the I18nSafeXMLFileWritingSample. java program in
SORACLE_HOME/xdk/demo/java/parser/dom.

Note that you cannot use System.out.println() to output special characters. You
need to use a binary output stream such as OutputStreamWriter that is encoding
aware. You can construct an OutputStreamWriter and use the write (char([],
int, int) method to print, as in the following example:

/* Java encoding string for IS08859-1%*/
OutputStreamWriter out = new OutputStreamWriter (System.out, "8859_1");
OutputStreamWriter.write(...);

Working with XML in Strings

Currently, there is no method that can directly parse an XML document contained in a
String. You need to convert the string into an InputStreamor InputSource
object before parsing.

One technique is to create a ByteArrayInputStream that uses the bytes in the
string. For example, assume that xm1Doc is a reference to a string of XML. You can use
technique shown in Example 3-8 to convert the string to a byte array, convert the array
to a ByteArrwayInputStream, and then parse.

Example 3-8 Converting XML in a String

// create parser
DOMParser parser=new DOMParser () ;
// create XML document in a string
String xmlDoc =

"<?xml version='1.0'?>"+

"<hello>"+

" <world/>"+

"</hello>";
// convert string to bytes to stream
byte aByteArr [] = xmlDoc.getBytes();

ByteArrayInputStream bais = new ByteArrayInputStream(aByteArr,0,aByteArr.length);

Using the XML Parser for Java 3-43

Tips and Techniques for Parsing XML

// parse and obtain DOM tree
DOMParser.parse (bais) ;
XMLDocument doc = parser.getDocument () ;

Suppose that you want to convert the XMLDocument object created in the previous
code back to a string. You can perform this task by wrapping a StringWriterina
PrintWriter. The following example illustrates this technique:

StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter (sw);
doc.print (pw) ;

String YourDocInString = sw.toString();

ParseXMLFromString. java, which is located in
$ORACLE_HOME/xdk/demo/java/parser/dom, is a complete program that creates
an XML document as a string and parses it.

Parsing XML Documents with Accented Characters

Assume that an input XML file contains accented characters such as an é. Example 3-9
shows one way to parse an XML document with accented characters.

Example 3-9 Parsing a Document with Accented Characters

DOMParser parser=new DOMParser () ;

parser.setPreserveWhitespace (true);

parser.setErrorStream(System.err) ;

parser.setValidationMode (false);

parser.showWarnings (true) ;

parser.parse (new FileInputStream(new File("file_with_accents.xml")));

When you attempt to parse the XML file, the parser can sometimes throw an "Invalid
UTF-8 encoding" exception. If you explicitly set the encoding to UTF-8, or if you do
not specify it at all, then the parser interprets an accented character—which has an
ASCII value greater than 127—as the first byte of a UTF-8 multibyte sequence. If the
subsequent bytes do not form a valid UTF-8 sequence, then you receive an error.

This error means that your XML editor did not save the file with UTE-8 encoding. For
example, it may have saved it with ISO-8859-1 encoding. The encoding is a particular
scheme used to write the Unicode character number representation to disk. Adding
the following element to the top of an XML document does not itself cause your editor
to write out the bytes representing the file to disk with UTF-8 encoding:

<?xml version="1.0" encoding="UTF-8"?>

One solution is to read in accented characters in their hex or decimal format within the
XML document, for example, Ù ;. If you prefer not to use this technique,
however, then you can set the encoding based on the character set that you were using
when you created the XML file. For example, try setting the encoding to ISO-8859-1
(Western European ASCII) or to something different, depending on the tool or
operating system you are using.

Handling Special Characters in Tag Names

Special characters such as &, $, and #, and so on are not legal in tag names. For
example, if a document names tags after companies, and if the document includes the
tag <A&B>, then the parser issues an error about invalid characters.

If you are creating an XML document from scratch, then you can work around this
problem by using only valid NameChars. For example, you can name the tag <A_B>,

3-44 Oracle XML Developer's Kit Programmer's Guide

Tips and Techniques for Parsing XML

<AB>, <A_AND_B> and so on. If you are generating XML from external data sources
such as database tables, however, then XML 1.0 does not address this problem.

The datatype XMLType addresses this problem by providing the
setConvertSpecialChars and convert functions in the DBMS_XMLGEN package.
You can use these functions to control the use of special characters in SQL names and
XML names. The SQL to XML name mapping functions escape invalid XML
NameChar characters in the format of _ XHHHH , where HHHH is the Unicode value of
the invalid character. For example, table name V$SESSION is mapped to XML name
V_X0024_SESSION.

Escaping invalid characters is another workaround to give users a way to serialize
names so that they can reload them somewhere else.

Using the XML Parser for Java 3-45

Tips and Techniques for Parsing XML

3-46 Oracle XML Developer's Kit Programmer's Guide

4

Using the XSLT Processor for Java

This chapter contains these topics:

= Introduction to the XSLT Processor

= Using the XSLT Processor for Java: Overview
s Transforming XML

= Programming with Oracle XSLT Extensions

= Tips and Techniques for Transforming XML

Introduction to the XSLT Processor

Prerequisites

This section contains the following topics:
» Prerequisites
» Standards and Specifications

s XML Transformation with XSLT 1.0 and 2.0

XSLT is an XML-based language that you can use to transform one XML document
into another text document. For example, you can use XSLT to accept an XML data
document as input, perform arithmetic calculations on element values in the
document, and generate an XHTML document that shows the calculation results.

In XSLT, XPath is used to navigate and process elements in the source node tree. XPath
models an XML document as a tree made up of nodes; the types of nodes in the XPath
node tree correspond to the types of nodes in a DOM tree.

This chapter assumes that you are familiar with the following W3C standards:

= eXtensible Stylesheet Language (XSL) and eXtensible Stylesheet Language
Transformation (XSLT). If you require a general introduction to XSLT, consult the
XML resources listed in "Related Documents" on page xxxvi of the preface. You
may find it useful to consult the XSLT primer in Oracle XML DB Developer’s Guide.

= XML Path (XPath). You may find it useful to consult the XPath primer in Oracle
XML DB Developer’s Guide.

Standards and Specifications

XSLT is currently available in two versions: a working draft for XSLT 2.0 and the XSLT
1.0 Recommendation. You can find the specifications at the following URLs:

Using the XSLT Processor for Java 4-1

Introduction to the XSLT Processor

http://www.w3.0rg/TR/xs1t20/

http://www.w3.0rg/TR/xslt

XPath, which is the navigational language used by XSLT and other XML languages, is
available in two versions: a working draft for XPath 2.0 and the XPath 1.0
Recommendation. You can find the specifications for the two XPath versions at the
following URLs:

http://www.w3.org/TR/xpath20/

http://www.w3.0org/TR/xpath

Oracle XDK XSLT processor implements both the XSLT and XPath 1.0 standards as
well as the current working drafts of the XSLT and XPath 2.0 standards. The XDK
XSLT processor supports the XPath 2.0 functions and operators. You can find the
specification at the following URL:

http://www.w3.0org/TR/xpath-functions/

See Also: Chapter 29, "XDK Standards” for a summary of the
standards supported by the XDK

XML Transformation with XSLT 1.0 and 2.0

In Oracle Database 10g, the XDK provides several useful features not included in XSLT
1.0. To use XSLT 2.0, set the version attribute in your stylesheet as follows:

<? xml-stylesheet version="2.0" ... ?>

Some of the most useful XSLT 2.0 features are the following;:

User-defined functions

You can use the <xs1: function> declaration to define functions. This element
must have one name attribute to define the function name. The value of the name
attribute is a QName. The content of the <xs1: function> element is zero or more
xsl:param elements that specify the formal arguments of the function, followed
by a sequence constructor that defines the value returned by the function.

Note that QName can have a null namespace, but user-defined functions must have
a non-null namespace. That is, if abc is defined as a namespace, then add is not a
legal user-defined function, but abc: add is.

Grouping

You can use the <xs1: for-each-group> element, current-group () function,
and current-grouping-key () function to group items.

Multiple result documents

You can use the <xs1:result-document> element to create a result tree. The
content of the <xs1:result-document> element is a sequence constructor for
the children of the document node of the tree.

For example, this element enables you to accept an XML document as input and
break it into separate documents. You can take an XML document that describes a
list of books and generate an XHTML document for each book. You can then
validate each output document.

Temporary trees

Instead of representing the intermediate XSL transformation results and XSL
variables as strings, as in XSLT 1.0, you can store them as a set of document nodes.

4-2 Oracle XML Developer's Kit Programmer's Guide

Using the XSLT Processor for Java: Overview

The document nodes, which you can construct with the <xsl:variable>,
<xsl:param>, and <xsl:with-param> elements, are called temporary trees.

Character mapping

In XSLT 1.0, you had to use the disable-output-escaping attribute of the
<xsl:text>and <xsl:value-of> elements to specify character escaping. In
XSLT 2.0, you can declare mapping characters with an <xs1:character-map>
element as a top level stylesheet element. You can use this element to generate files
with reserved or invalid XML characters in the XSLT outputs, such as <, >, and &.

See Also: http://www.w3.org/TR/xslt20 for explanation and
examples of XSLT 2.0 features

Using the XSLT Processor for Java: Overview

The Oracle XDK XSLT processor is a software program that transforms an XML
document into another text-based format. For example, the processor can transform
XML into XML, HTML, XHTML, or text. You can invoke the processor
programmatically by using the APIs or run it from the command line. The XSLT
processor can perform the following tasks:

Reads one or more XSLT stylesheets. The processor can apply multiple stylesheets
to a single XML input document and generate different results.

Reads one or more input XML documents. The processor can use a single
stylesheet to transform multiple XML input documents.

Builds output documents by applying the rules in the stylesheet to the input XML
documents. The output is a DOM tree, output stream, or series of SAX events.

Whereas XSLT is a function-based language that generally requires a DOM of the
input document and stylesheet to perform the transformation, the Java XDK
implementation of the XSLT processor can use SAX to create a stylesheet object to
perform transformations with higher efficiency and fewer resources. You can reuse this
stylesheet object to transform multiple documents without reparsing the stylesheet.

Using the XSLT Processor: Basic Process
Figure 4-1 depicts the basic design of the XSLT processor for Java.

See Also: Oracle Database XML Java API Reference to learn about the
XMLParser and XSDBuilder classes

Using the XSLT Processor for Java 4-3

Using the XSLT Processor for Java: Overview

Figure 4-1 Using the XSLT Processor for Java

XSLProcessor
object methods:

* removeParam()
* resetParam()
setParam()
setBaseURL()
setEntityResolver()
setlLocale()

}

XSL Stylesheet

XSL input object

=3 XSLProcessor f=p

?

java.io.Reader
java.io.InputStream
XMLDocument
java.net.URL

v

XSLT
Transformation

XML input o

v v v

Create an XML
document object

Write to an
output stream

Report as
SAX events

Running the XSLT Processor Demo Programs

Table 4-1

Demo programs for the XSLT processor for Java are included in
SORACLE_HOME/xdk/demo/java/parser/xslt. Table 4-1 describes the XML files
and programs that you can use to test the XSLT processor.

XSLT Processor Sample Files

File

Description

match.xml

A sample XML document that you can use to test ID selection and pattern matching. Its
associated stylesheet ismatch.xs1.

match.xsl

A sample stylesheet for use with match.xml. You can use it to test simple identity
transformations.

math.xml

A sample XML data document that you can use to perform simple arithmetic. Its associated
stylesheet is math.xs1.

math.xsl

A sample stylesheet for use with math.xml. The stylesheet outputs an HTML page with
the results of arithmetic operations performed on element values in math.xml.

number .xml

A sample XML data document that you can use to test for source tree numbering. The
document describes the structure of a book.

number .xsl

A sample stylesheet for us with number . xml. The stylesheet outputs an HTML page that
calculates section numbers for the sections in the book described by number . xm1.

position.xml

A sample XML data document that you can use to test for position () =X in complex
patterns. Its associated stylesheet is position.xsl.

4-4 Oracle XML Developer's Kit Programmer's Guide

Using the XSLT Processor for Java: Overview

Table 4-1 (Cont.) XSLT Processor Sample Files

File

Description

position.xsl

A sample stylesheet for use with position.xml. The stylesheet outputs an HTML page
with the results of complex pattern matching.

reverse.xml

A sample XML data document that you can use with reverse.xs1 to traverse backward
through a tree.

reverse.xsl

A sample stylesheet for us with reverse.xml. The stylesheet output the item numbers in
reverse.xml in reverse order.

string.xml

A sample XML data document that you can use to test perform various string test and
manipulations. Its associated stylesheet is string.xs1.

string.xsl

A sample stylesheet for us with string.xml. The stylesheet outputs an XML document
that displays the results of the string manipulations.

style.txt

A stylesheet that provides the framework for an HTML page. The stylesheet is included by
number .xsl.

variable.xml

A sample XML data document that you can use to test the use of XSL variables. The
document describes the structure of a book. Its associated stylesheet is variable.xsl.

variable.xsl

A stylesheet for use with variable.xml. The stylesheet makes extensive use of XSL
variables.

XSLSample. java

A sample application that offers a simple example of how to use the XSL processing
capabilities of the Oracle XSLT processor. The program transforms an input XML document
by using an input stylesheet. This program builds the result of XSL transformations as a
DocumentFragment and does not show xs1 : output features.

Run this program with any XSLT stylesheet in the directory as a first argument and its
associated * .xm1 XML document as a second argument. For example, run the program
with variable.xsl and variable.xml or string.xsl and string.xml.

XSLSample?2.java

A sample application that offers a simple example of how to use the XSL processing
capabilities of the Oracle XSLT processor. The program transforms an input XML document
by using an input stylesheet. This program outputs the result to a stream and supports
xsl:output features. Like XSLSample. java, you can run it against any pair of XML data
documents and stylesheets in the directory.

Documentation for how to compile and run the sample programs is located in the
README. The basic steps are as follows:

1.

Change into the SORACLE_HOME/xdk/demo/java/parser/xslt directory
(UNIX) or $ORACLE_HOME%\xdk\demo\Jjava\parser\xslt directory
(Windows).

Make sure that your environment variables are set as described in "Setting Up the
Java XDK Environment" on page 2-5.

Run make (UNIX) or Make.bat (Windows) at the command line. The make file
compiles the source code and then runs the XSLSample and XSLSample2
programs for each * . xm1l file and its associated * .xs1 stylesheet. The program
writes its output for each transformation to * . out.

You can view the * . out files to see the output for the XML transformations. You
can also run the programs on the command line as follows, where name is
replaced by match, math, and so forth:

java XSLSample name.xsl name.xml
java XSLSample2 name.xsl name.xml

For example, run the match.xml demos as follows:

java XSLSample match.xsl match.xml

Using the XSLT Processor for Java 4-5

Using the XSLT Processor for Java: Overview

java XSLSample2 match.xsl match.xml

Using the XSLT Processor Command-Line Utility

The XDK includes oraxs1, which is a command-line Java interface that can apply a
stylesheet to multiple XML documents. The $ORACLE_HOME/bin/oraxsl and
$ORACLE_HOME%\bin\oraxsl.bat shell scripts execute the
oracle.xml.jaxb.oraxsl class. To use oraxsl ensure that your CLASSPATH is set
as described in "Setting Up the Java XDK Environment" on page 2-5.

Use the following syntax on the command line to invoke oraxs1:

oraxsl options source stylesheet result

The oraxs1 utility expects a stylesheet, an XML file to transform, and an optional
result file. If you do not specify a result file, then the utility sends the transformed
document to standard output. If multiple XML documents need to be transformed by
a stylesheet, then use the -1 or -d options in conjunction with the -s and -r options.
These and other options are described in Table 4-2.

Table 4-2 Command Line Options for oraxsl

Option

Description

-w

Shows warnings. By default, warnings are turned off.

-e error_log

Specifies file into which the program writes errors and warnings.

-1xml_file list Lists files to be processed.

-ddirectory

Specifies the directory that contains the files to transform. The default behavior is to
process all files in the directory. If only a subset of the files in that directory, for example,
one file, need to be processed, then change this behavior by setting -1 and specifying
the files that need to be processed. You can also change the behavior by using the -x or
-1 option to select files based on their extension.

-x source_extension Specifies extensions for the files that should be excluded. Use this option in conjunction

with -d. The program does not select any files with the specified extension.

-1 source_extension Specifies extensions for the files that should be included. Use this option in conjunction

with -d. The program selects only files with the specified extension.

-s stylesheet

Specifies the stylesheet. If you set -d or -1, then set -s to indicate the stylesheet to be
used. You must specify the complete path.

-r result_extension Specifies the extension to use for results. If you set -d or -1, then set -r to specify the

extension to be used for the results of the transformation. So, if you specify the
extension out, the program transformed an input document doc to doc . out. By
default, the program places the results in the current directory. You can change this
behavior by using the -o option, which allows you to specify a directory for the results.

-o result_directory Specifies the directory in which to place results. You must set this option in conjunction

with the -r option.

-pparam _1list

Lists parameters.

-t num_of_threads Specifies the number of threads to use for processing. Using multiple threads can

provide performance improvements when processing multiple documents.

-v Generates verbose output. The program prints some debugging information and can
help in tracing any problems that are encountered during processing.
-debug Generates debugging output. By default, debug mode is disabled. Note that a GUI

version of the XSLT debugger is available in Oracle JDeveloper.

4-6 Oracle XML Developer's Kit Programmer's Guide

Transforming XML

Using the XSLT Processor Command-Line Utility: Example

You can test oraxsl on the various XML files and stylesheets in
$ORACLE_HOME/xdk/demo/java/parser/xslt. Example 4-1 displays the
contents of math.xml.

Example 4-1 math.xml

<?xml version="1.0"?>

<doc>
<nl>5</nl>
<n2>2</n2>
<div>-5</div>
<mod>2</mod>

</doc>

The XSLT stylesheet named math . xs1 is shown in Example 4-2.

Example 4-2 math.xsl

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="doc">
<HTML>
<H1>Test for mod.</H1>
<HR/>
<P>Should say "1": <xsl:value-of select="5 mod 2"/></P>
<P>Should say "1": <xsl:value-of select="nl mod n2"/></P>
<P>Should say "-1": <xsl:value-of select="div mod mod"/></P>
<P><xsl:value-of select="div or ((mod)) | or"/></P>
</HTML>
</xsl:template>
</xsl:stylesheet

You can run the oraxs1 utility on these files to produce HTML output as shown in the
following example:

oraxsl math.xml math.xsl math.htm

The output file math.htm is shown in Example 4-3.

Example 4-3 math.htm

<HTML>
<H1>Test for mod.</H1>
<HR>
<P>Should say "1": 1</P>
<P>Should say "1": 1</P>
<P>Should say "-1": -1</P>
<P>true</P>

</HTML>

Transforming XML
This section contains the following topics:
s Performing Basic XSL Transformation

= Obtaining DOM Results from an XSL Transformation

Using the XSLT Processor for Java 4-7

Transforming XML

Performing Basic XSL Transformation

As explained in "Using the XSLT Processor for Java: Overview" on page 4-3, the
fundamental classes used by the XSLT processor are DOMParser and XSLProcessor.
The XSL2Sample. java demo program provides a good illustration of how to use
these classes to transform an XML document with an XSLT stylesheet.

Use the following basic steps to write Java programs that use the XSLT processor:

1.

Create a DOM parser object that you can use to parse the XML data documents
and XSLT stylesheets. The following code fragment from XSL2Sample. java
illustrates how to instantiate a parser:

XMLDocument xml, xsldoc, out;

URL xslURL;

URL xmlURL;

/...

parser = new DOMParser () ;
parser.setPreserveWhitespace (true);

Note that by default, the parser does not preserve whitespace unless a DTD is
used. It is important to preserve whitespace because it enables XSLT whitespace
rules to determine how whitespace is handled.

Parse the XSLT stylesheet with the DOMParser.parse () method. The following
code fragment from XSL2Sample. java illustrates how to perform the parse:

xs1URL = DemoUtil.createURL(args[0]);
parser.parse (xslURL) ;
xsldoc = parser.getDocument () ;

Parse the XML data document with the DOMParser .parse () method. The
following code fragment from XSL2Sample. java illustrates how to perform the
parse:

xmlURL = DemoUtil.createURL (args[1l]);
parser.parse (xmlURL) ;
xml = parser.getDocument () ;

Create a new XSLT stylesheet object. You can pass objects of the following classes
to the XSLProcessor .newXSLStylesheet () method:

s Jjava.io.Reader

m Jjava.lio.InputStream

s XMLDocument

s Jjava.net.URL

For example, XSL2Sample . java illustrates how to create a stylesheet object from
an XMLDocument object:

XSLProcessor processor = new XSLProcessor();
processor.setBaseURL (xs1URL) ;
XSLStylesheet xsl = processor.newXSLStylesheet (xsldoc);

Set the XSLT processor to display any warnings. For example, XSL2Sample. java
calls the showWarnings () and setErrorStream () methods as follows:

processor.showWarnings (true) ;
processor.setErrorStream(System.err) ;

4-8 Oracle XML Developer's Kit Programmer's Guide

Transforming XML

6. Use the XSLProcessor.processXSL () method to apply the stylesheet to the
input XML data document. Table 4-3 lists some of the other available
XSLProcessor methods.

Table 4-3 XSLProcessor Methods

Method Description

removeParam () Removes parameters.

resetParams () Resets all parameters.

setParam() Sets parameters for the transformation.

setBaseUrl () Sets a base URL for any relative references in the stylesheet.
setEntityResolver () Sets an entity resolver for any relative references in the stylesheet.
setLocale() Sets a locale for error reporting.

The following code fragment from XSL2Sample. java shows how to apply the
stylesheet to the XML document:

processor.processXSL(xsl, xml, System.out);
7. Process the transformed output. You can transform the results by creating an XML
document object, writing to an output stream, or reporting SAX events.

The following code fragment from XSL2Sample. java shows how to print the
results:

processor.processXSL(xsl, xml, System.out);

See Also:

s http://www.w3.org/TR/xslt

s http://www.w3.org/style/XSL

s Chapter 3, "Using the XML Parser for Java"

Obtaining DOM Results from an XSL Transformation

The XSLSample. java demo program illustrates how to generate an
oracle.xml.parser.v2.XMLDocumentFragment object as the result of an XSL
transformation. An XMLDocumentFragment is a "lightweight" Document object that
extracts a portion of an XML document tree. The XMLDocumentFragment class
implements the org.w3c.dom. DocumentFragment interface.

The XSL2Sample. java program illustrates how to generate a DocumentFragment
object. The basic steps for transforming XML are the same as those described in
"Performing Basic XSL Transformation" on page 4-8. The only difference is in the
arguments passed to the XSLProcessor.processXSL () method. The following
code fragment from XSL2Sample. java shows how to create the DOM fragment and
then print it to standard output:

XMLDocumentFragment result = processor.processXSL(xsl, xml);
result.print (System.out) ;

Table 44 lists some of the XMLDocumentFragment methods that you can use to
manipulate the object.

Using the XSLT Processor for Java 4-9

Programming with Oracle XSLT Extensions

Table 4-4 XMLDocumentFragment Methods

Method Description

getAttributes () Gets a NamedNodeMap containing the attributes of this node (if it
is an Element) or null otherwise

getLocalName () Gets the local name for this element

getNamespaceURT () Gets the namespace URI of this element

getNextSibling () Gets the node immediately following the current node

getNodeName () Gets the name of the node

getNodeType () Gets a code that represents the type of the underlying object

getParentNode () Gets the parent of the current node

getPreviousSibling () Gets the node immediately preceding the current node

reportSAXEvents () Reports SAX events from a DOM Tree

Programming with Oracle XSLT Extensions

This section contains these topics:

Overview of Oracle XSLT Extensions

Specifying Namespaces for XSLT Extension Functions
Using Static and Non-Static Java Methods in XSLT
Using Constructor Extension Functions

Using Return Value Extension Functions

Overview of Oracle XSLT Extensions

The XSLT 1.0 standard defines two kinds of extensions: extension elements and
extension functions. The XDK provides extension functions for XSLT processing that
enable users of the XSLT processor to call any Java method from XSL expressions.
Note the following guidelines when using Oracle XSLT extensions:

When you define an XSLT extension in a given programming language, you can
only use the XSLT stylesheet with XSLT processors that can invoke this extension.
Thus, only the Java version of the processor can invoke extension functions that
are defined in Java.

Use XSLT extensions only if the built-in XSL functions cannot solve a given
problem.

As explained in the following section, the namespace of the extension class must
start with the proper URL.

The following Oracle extension functions are particularly useful:

<ora:output>, you can use <ora:output> as a top-level element or in an XSL
template. If used as a top-level element, it is similar to the <xs1:output>
extension function, except that it has an additional name attribute. When used as a
template, it has the additional attributes use and href. This function is useful for
creating multiple outputs from one XSL transformation.

<ora:node-set>, which converts a result tree fragment into a node-set. This
function is useful when you want to refer the existing text or intermediate text
results in XSL for further transformation.

4-10 Oracle XML Developer's Kit Programmer's Guide

Programming with Oracle XSLT Extensions

Specifying Namespaces for XSLT Extension Functions

The Oracle Java extension functions belong to the namespace that corresponds to the
following URI:

http://www.oracle.com/XSL/Transform/java/

An extension function that belongs to the following namespace refers to methods in
the Java cIlassname, so that you can construct URIs in the following format:
http://www.oracle.com/XSL/Transform/java/classname

For example, you can use the following namespace to call java.lang.String

methods from XSL expressions:

http://www.oracle.com/XSL/Transform/java/java.lang.String

Note: When assigning the xs1 prefix to a namespace, the correct URI
is xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform".
Any other URI fails to give correct output.

Using Static and Non-Static Java Methods in XSLT

If the Java method is a non-static method of the class, then the first parameter is used
as the instance on which the method is invoked, and the rest of the parameters are
passed to the method. If the extension function is a static method, however, then all the
parameters of the extension function are passed as parameters to the static function.
Example 4-4 shows how to use the java.lang.Math.ceil () method in an XSLT
stylesheet.

Example 4-4 Using a Static Function in an XSLT Stylesheet

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:math="http://www.oracle.com/XSL/Transform/java/java.lang.Math">
<xsl:template match="/">
<xsl:value-of select="math:ceil('12.34")"/>
</xsl:template>
</xsl:stylesheet>

For example, you can create Example 44 as stylesheet ceil.xsl and then apply it to
any well-formed XML document. For example, run the oraxs1 utility as follows:

oraxsl ceil.xsl ceil.xsl ceil.out

The output document ceil. out has the following content:

<?xml version = '1.0' encoding = 'UTF-8'?>
13

Note: The XSL class loader only knows about statically added
JARs and paths in the CLASSPATH as well as those specified by
wrapper.classpath. Files added dynamically are not visible to
XSLT processor.

Using the XSLT Processor for Java 4-11

Programming with Oracle XSLT Extensions

Using Constructor Extension Functions

The extension function new creates a new instance of the class and acts as the
constructor. Example 4-5 creates a new String object with the value "Hello World,"
stores it in the XSL variable str1, and then outputs it in uppercase.

Example 4-5 Using a Constructor in an XSLT Stylesheet

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:jstring="http://www.oracle.com/XSL/Transform/java/java.lang.String">
<xsl:template match="/">
<!-- creates a new java.lang.String and stores it in the variable strl -->
<xsl:variable name="strl" select="jstring:new('HeLlO wOrLd')"/>
<xsl:value-of select="jstring:toUpperCase($strl)"/>
</xsl:template>
</xsl:stylesheet>

For example, you can create this stylesheet as hello.xsl and apply it to any
well-formed XML document. For example, run the oraxs1 utility as follows:

oraxsl hello.xsl hello.xsl hello.out

The output document hello. out has the following content:

<?xml version = '1.0' encoding = 'UTF-8'?>
HELLO WORLD

Using Return Value Extension Functions

The result of an extension function can be of any type, including the five types defined
in XSL and the additional simple XML Schema data types defined in XSLT 2.0:

m NodeSet

m Boolean

m String

s Number

m ResultTree

You can store these data types in variables or pass to other extension functions. If the
result is of one of the five types defined in XSL, then the result can be returned as the
result of an XSL expression.

The XSLT Processor supports overloading based on the number of parameters and
type. The processor performs implicit type conversion between the five XSL types as
defined in XSL. It performs type conversion implicitly among the following datatypes,
and also from NodeSet to the following datatypes:

m String

s Number

m Boolean

m ResultTree

Overloading based on two types that can be implicitly converted to each other is not
permitted. The following overloading results in an error in XSL because String and
Number can be implicitly converted to each other:

m overloadme(int i) {}

4-12 Oracle XML Developer's Kit Programmer's Guide

Tips and Techniques for Transforming XML

m overloadme (String s) {}

Mapping between XSL datatypes and Java datatypes is done as follows:

String -> java.lang.String
Number -> int, float, double
Boolean -> boolean

NodeSet -> XMLNodeList
ResultTree -> XMLDocumentFragment

The stylesheet in Example 4—6 parses the variable.xml document, which is located
in the directory SORACLE_HOME/xdk/demo/java/parser/xslt, and retrieves the
value of the <title> child of the <chapter> element.

Example 4-6 gettitle.xsl

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:parser =
"http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.DOMParser"
xmlns:document =
"http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.XMLDocument ">

<xsl:template match ="/">
<!-- Create a new instance of the parser and store it in myparser variable -->
<xsl:variable name="myparser" select="parser:new()"/>

<!-- Call an instance method of DOMParser. The first parameter is the object.
The PI is equivalent to S$myparser.parse('file:/my_path/variable.xml'). Note
that you should replace my_path with the absolute path on your system. -->

<xsl:value-of select="parser:parse(Smyparser, 'file:/my_path/variable.xml')"/>

<!-- Get the document node of the XML Dom tree -->
<xsl:variable name="mydocument" select="parser:getDocument ($myparser)"/>

<!-- Invoke getelementsbytagname on mydocument -->
<xsl:for-each select="document:getElementsByTagName ($mydocument, 'chapter') ">
The value of the title element is: <xsl:value-of select="docinfo/title" />
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

You can create Example 4-6 as gettitle.xsl and then run oraxsl as follows:

oraxsl gettitle.xsl gettitle.xsl variable.out

The output document variable. out has the following content:

<?xml version = '1.0' encoding = 'UTF-8'?>
The value of the title element is: Section Tests

Tips and Techniques for Transforming XML

This section lists XSL and XSLT Processor for Java hints, and contains these topics:
s Merging XML Documents with XSLT
s Creating an HTML Input Form Based on the Columns in a Table

Using the XSLT Processor for Java 4-13

Tips and Techniques for Transforming XML

Merging XML Documents with XSLT

"Merging Documents with appendChild()" on page 3-38 discusses the DOM technique
for merging documents. If the merging operation is simple, then you can also use an
XSLT-based approach. Suppose that you want to merge the XML documents in
Example 4-7 and Example 4-8.

Example 4-7 msg_w_num.xml

<messages>
<msg>
<key>AAA</key>
<num>01001</num>
</msg>
<msg>
<key>BBB</key>
<num>01011</num>
</msg>
</messages>

Example 4-8 msg_w_text.xml

<messages>
<msg>
<key>AAA</key>
<text>This is a Message</text>
</msg>
<msg>
<key>BBB</key>
<text>This is another Message</text>
</msg>
</messages>

Example 4-9 displays a sample stylesheet that merges the two XML documents based
on matching the <key/> element values.

Example 4-9 msgmerge.xsl

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output indent="yes"/>
<!-- store msg_w_text.xml in doc2 variable -->
<xsl:variable name="doc2" select="document ('msg_w_text.xml')"/>

<!-- match each node in input xml document, that is, msg_w_num.xml -->
<xsl:template match="@*|node()">
<!-- copy the current node to the result tree -->

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
</xsl:copy>
</xsl:template>

<!-- match each <msg> element in msg_w_num.xml -->
<xsl:template match="msg">
<xsl:copy>
<xsl:apply-templates select:"@*\node()"/>

<!-- insert two spaces so indentation is correct in output document -->
<xsl:text> </xsl:text>
<!-- copy <text> node from msg_w_text.xml into result tree -->

<text><xsl:value-of
select="$doc2/messages/msg[key=current () /key] /text"/>
</text>

4-14 Oracle XML Developer's Kit Programmer's Guide

Tips and Techniques for Transforming XML

</xsl:copy>
</xsl:template>
</xsl:stylesheet>

Create the XML files in Example 4-7, Example 4-8, and Example 4-9 and run the
following at the command line:

oraxsl msg_w_num.xml msgmerge.xsl msgmerge.xml

Example 4-10 shows the output document, which merges the data contained in
msg_w_num.xml and msg_w_text.xml.

Example 4-10 msgmerge.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<messages>
<msg>
<key>AAA</key>
<num>01001</num>
<text>This is a Message</text>
</msg>
<msg>
<key>BBB</key>
<num>01011</num>
<text>This is another Message</text>
</msg>
</messages>

This technique is not as efficient for larger files as an equivalent database join of two
tables, but it is useful if you have only XML files to work with.

Creating an HTML Input Form Based on the Columns in a Table

Suppose that you want to generate an HTML form for inputting data that uses column
names from a database table. You can achieve this goal by using XSU to obtain an XML
document based on the user_tab_columns table and XSLT to transform the XML
into an HTML form.

1.

Use XSU to generate an XML document based on the columns in the table. For
example, suppose that the table is hr . employees. You can run XSU from the
command line as follows:

java OracleXML getXML -user "hr/hr" "SELECT column_name FROM user_tab_columns
WHERE table_name = 'EMPLOYEES'"

Save the XSU output as an XML file called emp_columns.xml. The XML should
look like the following, with one <ROW> element corresponding to each column in
the table (some <ROW> elements have been removed to conserve space):

<?xml version = '1.0'?>
<ROWSET>
<ROW num="1">
<COLUMN_NAME>EMPLOYEE_ ID</COLUMN_NAME>
</ROW>
<ROW num="2">
<COLUMN_NAME>FIRST NAME</COLUMN_NAME>
</ROW>
<!-- rows 3 through 10 -->
<ROW num="11">
<COLUMN_NAME>DEPARTMENT _ID</COLUMN_NAME>
</ROW>

Using the XSLT Processor for Java 4-15

Tips and Techniques for Transforming XML

</ROWSET>

3. Create a stylesheet to transform the XML into HTML. For example, create the
columns.xsl stylesheet as follows:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:template match="/">
<HTML>
<xsl:apply-templates select="@*|node()"/>
</HTML>
</xsl:template>
<xsl:template match="ROW">
<xsl:value-of select="COLUMN_NAME"/>
<xsl:text> </xsl:text>
<INPUT NAME="{COLUMN_NAME}"/>

</xsl:template>
</xsl:stylesheet>

4. Run the oraxs]l utility to generate the HTML form. For example:

oraxsl emp_columns.xml columns.xsl emp_form.htm

5. Review the output HTML form, which should have the following contents:

<HTML>
EMPLOYEE_ID <INPUT NAME="EMPLOYEE_ID">

FIRST NAME <INPUT NAME="FIRST_ NAME">

LAST_NAME <INPUT NAME="LAST_NAME">

EMAIL <INPUT NAME="EMAIL">

PHONE_NUMBER <INPUT NAME="PHONE_NUMBER">

HIRE_DATE <INPUT NAME="HIRE_DATE">

JOB_ID <INPUT NAME="JOB_ID">

SALARY <INPUT NAME="SALARY">

COMMISSION_PCT <INPUT NAME="COMMISSION_PCT">

MANAGER_ID <INPUT NAME="MANAGER_ID">

DEPARTMENT_IDé <INPUT NAME="DEPARTMENT_ID">

</HTML>

4-16 Oracle XML Developer's Kit Programmer's Guide

O

Using the Schema Processor for Java

This chapter contains these topics:

s Introduction to XML Validation

= Using the XML Schema Processor: Overview

s Validating XML with XML Schemas

s Tips and Techniques for Programming with XML Schemas

Introduction to XML Validation

Prerequisites

This section describes the different techniques for XML validation. It discusses the
following topics:

» Prerequisites

» Standards and Specifications

= XML Validation with DTDs

» XML Validation with XML Schemas

= Differences Between XML Schemas and DTDs

This chapter assumes that you have working knowledge of the following technologies:

s Document Type Definition (DTD). An XML DTD defines the legal structure of an
XML document.

= XML Schema language. XML Schema defines the legal structure of an XML
document.

If you are unfamiliar with these technologies or need to refresh your knowledge, you
can consult the XML resources in "Related Documents" on page xxxvi of the preface.

See Also:
m http://www.w3schools.com/dtd/ for a DTD tutorial

m http://www.w3schools.com/schema for an XML Schema
language tutorial

Standards and Specifications

XML Schema is a W3C standard. You can find the XML Schema specifications at the
following locations:

Using the Schema Processor for Java 5-1

Introduction to XML Validation

m http://www.w3.org/TR/xmlschema-0/ for the W3C XML Schema Primer

m http://www.w3.org/TR/xmlschema-1/ for the definition of the XML Schema
language structures

m http://www.w3.org/TR/xmlschema-2/ for the definition of the XML Schema
language datatypes

The Oracle XML Schema processor supports the W3C XML Schema specifications.

See Also: Chapter 29, "XDK Standards" for a summary of the
standards supported by the XDK

XML Validation with DTDs

DTDs were originally developed for SGML. XML DTDs are a subset of those available
in SGML and provide a mechanism for declaring constraints on XML markup. XML
DTDs enable the specification of the following;:

= Which elements can be in your XML documents

= The content model of an XML element, that is, whether the element contains only
data or has a set of subelements that defines its structure. DTDs can define
whether a subelement is optional or mandatory and whether it can occur only
once or multiple times.

= Attributes of XML elements. DTDs can also specify whether attributes are optional
or mandatory.

= Entities that are legal in your XML documents.

An XML DTD is not itself written in XML, but is a context-independent grammar for
defining the structure of an XML document. You can declare a DTD in an XML
document itself or in a separate file from the XML document.

Validation is the process by which you verify an XML document against its associated
DTD, ensuring that the structure, use of elements, and use of attributes are consistent
with the definitions in the DTD. Thus, applications that handle XML documents can
assume that the data matches the definition.

By using the XDK, you can write an application that includes a validating XML parser,
that is, a program that parses and validates XML documents against a DTD. Note the
following aspects of parsers that perform DTD validation:

= Depending on its implementation, a validating parser may stop processing when
it encounters an error, or continue.

= A validating parser may report warnings and errors as they occur as in summary
form at the end of processing.

= Most processors can enable or disable validation mode, but they must still process
entity definitions and other constructs of DTDs.

DTD Samples in the XDK

Example 5-1 shows the contents of a DTD named family.dtd, which is located in
$ORACLE_HOME/xdk/demo/java/parser/common/. The <ELEMENT> tags specify
the legal nomenclature and structure of elements in the document, whereas the
<ATTLIST> tags specify the legal attributes of elements.

Example 5-1 family.dtd

<?xml version="1.0" encoding="UTF-8"?>

5-2 Oracle XML Developer's Kit Programmer's Guide

Introduction to XML Validation

<!ELEMENT family (member*)>

<!ATTLIST family lastname CDATA #REQUIRED>
<!ELEMENT member (#PCDATA)>

<!ATTLIST member memberid ID #REQUIRED>
<!ATTLIST member dad IDREF #IMPLIED>
<!ATTLIST member mom IDREF #IMPLIED>

Example 5-2 shows the contents of an XML document named family.xml, which is
also located in $ORACLE_HOME/xdk/demo/java/parser/common/. The
<!DOCTYPE> element in family.xml specifies that this XML document conforms to
the external DTD named family.dtd.

Example 5-2 family.xml

<?xml version="1.0" standalone="no"?>

<!DOCTYPE family SYSTEM "family.dtd">

<family lastname="Smith">

<member memberid="ml">Sarah</member>

<member memberid="m2">Bob</member>

<member memberid="m3" mom="ml" dad="m2">Joanne</member>
<member memberid="m4" mom="ml" dad="m2">Jim</member>
</family>

XML Validation with XML Schemas

The XML Schema language, also known as XML Schema Definition, was created by
the W3C to use XML syntax to describe the content and the structure of XML
documents. An XML schema is an XML document written in the XML Schema
language. An XML schema document contains rules describing the structure of an
input XML document, called an instance document. An instance document is valid if
and only if it conforms to the rules of the XML schema.

The XML Schema language defines such things as the following:

= Which elements and attributes are legal in the instance document
= Which elements can be children of other elements

s The order and number of child elements

= Datatypes for elements and attributes

» Default and fixed values for elements and attributes

A validating XML parser tries to determine whether an instance document conforms
to the rules of its associated XML schema. By using the XDK, you can write a
validating parser that performs this schema validation. Note the following aspects of
parsers that perform schema validation:

= Depending on its implementation, the parser may stop processing when it
encounters an error, or continue.

s The parser may report warnings and errors as they occur as in summary form at
the end of processing.

» The processor must take into account entity definitions and other constructs that
are defined in a DTD that is included by the instance document. The XML Schema
language does not define what must occurs when an instance document includes
both an XML schema and a DTD. Thus, the behavior of the application in such
cases depends on the implementation.

Using the Schema Processor for Java 5-3

Introduction to XML Validation

XML Schema Samples in the XDK

Example 5-3 shows a sample XML document that contains a purchase report that
describes the parts that have been ordered in different regions. This sample file is
located at SORACLE_HOME/xdk/demo/java/schema/report .xml.

Example 5-3 report.xml

<purchaseReport
xmlns="http://www.example.com/Report"
xmlns:xsi = "http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.example.com/Report report.xsd"
period="P3M" periodEnding="1999-12-31">

<regions>
<zip code="95819">
<part number="872-AA" quantity="1"/>
<part number="926-AA" quantity="1"/>
<part number="833-AA" quantity="1"/>
<part number="455-BX" quantity="1"/>
</zip>
<zip code="63143">
<part number="455-BX" quantity="4"/>
</zip>
</regions>
<parts>
<part number="872-AA">Lawnmower</part>
<part number="926-AA">Baby Monitor</part>
<part number="833-AA">Lapis Necklace</part>
<part number="455-BX">Sturdy Shelves</part>
</parts>
</purchaseReport>

Example 5-4 shows the XML schema document named report . xsd, which is the
sample XML schema document that you can use to validate report .xml. Among
other things, the XML schema defines the names of the elements that are legal in the
instance document as well as the type of data that the elements can contain.

Example 5-4 report.xsd

<schema targetNamespace="http://www.example.com/Report"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:r="http://www.example.com/Report"
elementFormDefault="qualified">

<annotation>
<documentation xml:lang="en">
Report schema for Example.com
Copyright 2000 Example.com. All rights reserved.
</documentation>
</annotation>

<element name="purchaseReport">
<complexType>
<sequence>
<element name="regions" type="r:RegionsType">
<keyref name="dummy2" refer="r:pNumKey">
<selector xpath="r:zip/r:part"/>
<field xpath="@number"/>
</keyref>
</element>

5-4 Oracle XML Developer's Kit Programmer's Guide

Introduction to XML Validation

<element name="parts" type="r:PartsType"/>

</sequence>

<attribute name="period" type="duration"/>

<attribute name="periodEnding" type="date"/>
</complexType>

<unique name="dummyl">
<selector xpath="r:regions/r:zip"/>
<field xpath="@code"/>

</unique>

<key name="pNumKey">
<selector xpath="r:parts/r:part"/>
<field xpath="@number"/>
</key>
</element>
<complexType name="RegionsType">
<sequence>
<element name="zip" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="part" maxOccurs="unbounded">
<complexType>
<complexContent>
<restriction base="anyType">
<attribute name="number" type="r:SKU" />
<attribute name="quantity" type="positivelnteger"/>
</restriction>
</complexContent>
</complexType>
</element>
</sequence>
<attribute name="code" type="positiveInteger"/>
</complexType>
</element>
</sequence>
</complexType>

<simpleType name="SKU">

<restriction base="string">
<pattern value="\d{3}-[A-Z]{2}"/>

</restriction>

</simpleType>

<complexType name="PartsType">
<sequence>
<element name="part" maxOccurs="unbounded">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="number" type="r:SKU"/>
</extension>
</simpleContent>
</complexType>
</element>
</sequence>
</complexType>

</schema>

Using the Schema Processor for Java

5-5

Introduction to XML Validation

Differences Between XML Schemas and DTDs

The XML Schema language includes most of the capabilities of the DTD specification.
An XML schema serves a similar purpose to a DTD, but is more flexible in specifying
document constraints. Table 5-1 compares some of the features between the two
validation mechanisms.

Table 5-1 Feature Comparison Between XML Schema and DTD
Feature XML Schema DTD

Element nesting

Element occurrence constraints

Permitted attributes

XX XX

Attribute types and default values
Written in XML

Namespace support

Built-In datatypes

User-Defined datatypes

Include/Import

XI XXX XXX X XX

Refinement (inheritance)

The following reasons are probably the most persuasive for choosing XML schema
validation over DTD validation:

s The XML Schema language enables you to define rules for the content of elements
and attributes. You achieve control over content by using datatypes. With XML
Schema datatypes you can more easily perform actions such as the following:

— Declare which elements should contain which types of data, for example,
positive integers in one element and years in another

— Process data obtained from a database

— Define restrictions on data, for example, a number between 10 and 20
— Define data formats, for example, dates in the form MM-DD-YYYY

— Convert data between different datatypes, for example, strings to dates

s Unlike DTD grammar, documents written in the XML Schema language are
themselves written in XML. Thus, you can perform the following actions:

— Use your XML parser to parse your XML schema

- Process your XML schema with the XML DOM

- Transform your XML document with XSLT

- Reuse your XML schemas in other XML schemas

- Extend your XML schema by adding elements and attributes

- Reference multiple XML schemas from the same document

5-6 Oracle XML Developer's Kit Programmer's Guide

Using the XML Schema Processor: Overview

Using the XML Schema Processor: Overview

The Oracle XML Schema processor is a SAX-based XML schema validator that you can
use to validate instance documents against an XML schema. The processor supports
both LAX and strict validation.

You can use the processor in the following ways:

= Enable it in the XML parser

» Useit with a DOM tree to validate whole or part of an XML document
= Useitas acomponent in a processing pipeline (like a content handler)

You can configure the schema processor in different ways depending on your
requirements. For example, you can do the following:

= Use a fixed XML schema or automatically build a schema based on the
schemaLocation attributes in an instance document.

s Set XMLError and entityResolver to gain better control over the validation
process.

s Determine how much of an instance document should be validated. You can use
any of the validation modes specified in Table 3-1. You can also designate a type of
element as the root of validation.

Using the XML Schema Processor: Basic Process

The following XDK packages are important for applications that process XML
schemas:

s oracle.xml.parser.v2, which provides APIs for XML parsing

s oracle.xml.parser.schema, which provides APIs for XML Schema
processing

The most important classes in the oracle.xml.parser. schema package are
described in Table 5-2. These form the core of most XML schema applications.

Table 5-2 oracle.xml.parser.schema Classes

Class/Interface

Description Methods

XMLSchema class

Represents XML Schema The principal methods are as follows:

component model. An XMLSchema | get methods such as getElement () and

?}?chtf 115 a sett ocfl.)f(?/iLSil';emalzTodes getSchemaTargetNS () obtain information about the
at belong to different targe XML schema

namespaces. The XSDvValidator
class uses XMLSchema for schema = printSchema () prints information about the XML

validation or metadata. schema

Using the Schema Processor for Java 5-7

Using the XML Schema Processor: Overview

Table 5-2 (Cont.) oracle.xml.parser.schema Classes

Class/Interface

Description

Methods

XMLSchemaNode class

Represents schema components in
a target namespace, including type
definitions, element and attribute
delcarations, and group and
attribute group definitions.

The principal methods are get methods such as
getElementSet () and getAttributeDeclarations ()
obtain components of the XML schema.

XSDBuilder class

Builds an XMLSchema object from
an XML schema document. The
XMLSchema object is a set of
objects (Infoset items)
corresponding to top-level schema
declarations and definitions. The
schema document is XML parsed
and converted to a DOM tree.

The principal methods are as follows:

build() creates an XMLSchema object.
getObject () returns the XMLSchema object.

setEntityResolver () setsan EntityResolver for
resolving imports and includes.

XSDValidator class

Validates an instance XML

document against an XML schema.

When registered, an
XSDValidator object is inserted
as a pipeline node between
XMLParser and XMLDocument
events handlers.

The principal methods are as follows:

get methods such as getCurrentMode () and
getElementDeclaration ()

set methods such as setXMLProperty () and
setDocumentLocator ()

startDocument () receives notification of the

beginning of the document.

= startElement () receives notification of the beginning
of the element.

Figure 5-1 depicts the basic process of validating an instance document with the XML
Schema processor.

Figure 5-1 XML Schema Processor

T e |_XSD
j— Builder
XML
Schema
XML
Schema
Object
l PSV
DOM + Default
— »| or p| Schema value | DOM Builder
J— SAX Validator or Application
Parser
XML
Instance
Document

m
3 |11}«
:

Messages

The XML Schema processor performs the following major tasks:

1. Abuilder (XsDBuilder object) assembles the XML schema from an input XML
schema document. Although instance documents and schemas need not exist
specifically as files on the operating system, they are commonly referred to as files.
They may exist as streams of bytes, fields in a database record, or collections of
XML Infoset "Information Items."

5-8 Oracle XML Developer's Kit Programmer's Guide

Using the XML Schema Processor: Overview

This task involves parsing the schema document into an object. The builder creates
the schema object explicitly or implicitly:

= Inexplicit mode, you pass in an XML schema when you invoke the processor.
"Validating Against Externally Referenced XML Schemas" on page 5-13
explains how to build the schema object in explicit mode.

s Inimplicit mode, you do not pass in an XML schema when you invoke the
processor because the schema is internally referenced by the instance
document. "Validating Against Internally Referenced XML Schemas" on
page 5-12 explains how to create the schema object in implicit mode.

2. The XML schema validator uses the schema object to validate the instance
document. This task involves the following steps:

a. A SAX parser parses the instance document into SAX events, which it passes
to the validator.

b. The validator receives SAX events as input and validates them against the
schema object, sending an error message if it finds invalid XML components.

"Validation in the XML Parser" on page 3-6 describes the validation modes
that you can use when validating the instance document. If you do not
explicitly set a schema for validation with the XSDBuilder class, then the
instance document must have the correct xsi: schemaLocation attribute
pointing to the schema file. Otherwise, the program will not perform the
validation. If the processor encounters errors, it generates error messages.

c. The validator sends input SAX events, default values, or post-schema
validation information to a DOM builder or application.
See Also:

» Oracle Database XML Java API Reference to learn about the
XSDBuilder, DOMParser, and SAXParser classes

s Chapter 5, "Using the Schema Processor for Java" to learn about
the XDK SAX and DOM parsers

Running the XML Schema Processor Demo Programs

Demo programs for the XML Schema processor for Java are included in
SORACLE_HOME/xdk/demo/java/schema. Table 5-3 describes the XML files and
programs that you can use to test the XML Schema processor.

Table 5-3 XML Schema Sample Files

File Description

cat.xsd A sample XML schema used by the XSDSetSchema . java program to validate
catalogue.xml. The cat.xsd schema specifies the structure of a catalogue of books.

catalogue.xml A sample instance document that the XSDSetSchema . java program uses to validate
against the cat . xsd schema.

catalogue_e.xml A sample instance document used by the XSDSample. java program. When the program
tries to validate this document against the cat . xsd schema, it generates schema errors.

DTD2Schema. java This sample program converts a DTD (first argument) into an XML Schema and uses it to
validate an XML file (second argument).

embeded_xsql .xsd The XML schema used by XSDLax . java. The schema defines the structure of an XSQL
page.

embeded_xsqgl .xml The instance document used by XSDLax . java.

Using the Schema Processor for Java 5-9

Using the XML Schema Processor: Overview

Table 5-3 (Cont.) XML Schema Sample Files

File Description

juicerl.xml A sample XML document for use with xsdproperty. java. The XML schema that defines
this document is juicerl .xsd.

juicerl.xsd A sample XML schema for use with xsdproperty. java. This XML schema defines
juicerl.xml.

juicer2.xml A sample XML document for use with xsdproperty. java. The XML schema that defines
this document is juicer2.xsd.

juicer2.xsd A sample XML document for use with xsdproperty . java. This XML schema defines
juicer2.xml.

report.xml The sample XML file that XSDSetSchema . java uses to validate against the XML schema
report.xsd.

report.xsd A sample XML schema used by the XSDSetSchema . java program to validate the contents
of report.xml. The report .xsd schema specifies the structure of a purchase order.

report_e.xml When the program validates this sample XML file using XSDSample. java, it generates
XML Schema errors.

xsddom. java This program shows how to validate an instance document by obtain a DOM representation
of the document and using an XSDValidator object to validate it.

xsdent . java This program validates an XML document by redirecting the referenced schema in the
SchemaLocation attribute to a local version.

xsdent .xml This XML document describes a book. The file is used as an input to xsdent . java.

xsdent .xsd This XML schema document defines the rules for xsdent . xm1. The schema document

contains a schemaLocation attribute set to xsdent-1.xsd.

xsdent-1.xsd The XML schema document referenced by the schemaLocation attribute in xsdent . xsd.

xsdproperty.java This demo shows how to configure the XML Schema processor to validate an XML
document based on a complex type or element declaration.

xsdsax.java This demo shows how to validate an XML document received as a SAX stream.

XSDLax.java This demo is the same as XSDSetSchema . java but sets the SCHEMA_TL.AX_VALTIDATION
flag for LAX validation.

XSDSample. java This program is a sample driver that you can use to process XML instance documents.

XSDSetSchema.java This program is a sample driver to process XML instance documents by overriding the
schemaLocation. The program uses the XML Schema specification from cat .xsd to
validate the contents of catalogue.xml.

Documentation for how to compile and run the sample programs is located in the
README in the same directory. The basic steps are as follows:

1. Change into the SORACLE_HOME/xdk/demo/java/schema directory (UNIX) or
$ORACLE_HOME% \xdk\demo\ java\schema directory (Windows).

2. Run make (UNIX) or Make.bat (Windows) at the command line.

3. Add xmlparserv2.jar, xschema. jar, and the current directory to the
CLASSPATH. These JAR files are located in SORACLE_HOME/1ib (UNIX) and
$ORACLE_HOME%\1ib (Windows). For example, you can set the CLASSPATH as
follows with the tcsh shell on UNIX:

setenv CLASSPATH
"$SCLASSPATH" : SORACLE_HOME/lib/xmlparserv2.jar:SORACLE_HOME/lib/schema.jar:.

Note that the XML Schema processor requires JDK version 1.2 or higher and is
usable on any operating system with Java 1.2 support.

5-10 Oracle XML Developer's Kit Programmer's Guide

Using the XML Schema Processor: Overview

4. Run the sample programs with the XML files that are included in the directory:

The following examples use report . xsd to validate the contents of
report.xml:

java XSDSample report.xml

java XSDSetSchema report.xsd report.xml

The following example validates an instance document in Lax mode:
java XSDLax embeded_xsql.xsd embeded_xsqgl.xml

The following examples use cat . xsd to validate the contents of
catalogue.xml:

java XSDSample catalogue.xml
java XSDSetSchema cat.xsd catalogue.xml

The following examples generates error messages:

java XSDSample catalogue_e.xml
java XSDSample report_e.xml

The following example uses the schemaLocation attribute in xsdent . xsd
to redirect the XML schema to xsdent-1.xsd for validation:

java xsdent xsdent.xml xsdent.xsd

The following example generates a SAX stream from report .xml and
validates it against the XML schema defined in report .xsd:

java xsdsax report.xsd report.xml

The following example creates a DOM representation of report .xml and
validates it against the XML schema defined in report .xsd:

java xsddom report.xsd report.xml

The following examples configure validation starting with an element
declaration or complex type definition:

java xsdproperty juicerl.xml juicerl.xsd http://www.juicers.org \
juicersType false > juicersType.out

java xsdproperty juicer2.xml juicer2.xsd http://www.juicers.org \
Juicers true > julcers_e.out

The following example converts a DTD (dtd2schema . dtd) into an XML
schema and uses it to validate an instance document (dtd2schema . xml):

java DTD2Schema dtd2schema.dtd dtd2schema.xml

Using the XML Schema Processor Command-Line Utility

"Using the XML Parser Command-Line Utility" on page 3-11 describes how to run the
oraxml command-line utility. You can use this utility to validate instance documents
against XML schemas and DTDs.

Using oraxml to Validate Against a Schema

Change into the SORACLE_HOME/xdk/demo/java/schema directory. Example 5-5
shows how you can validate report .xml against report .xsd by executing the
following on the command line.

Using the Schema Processor for Java 5-11

Validating XML with XML Schemas

Example 5-5 Using oraxml to Validate Against a Schema

oraxml -schema -enc report.xml

You should obtain the following output:

The encoding of the input file: UTF-8
The input XML file is parsed without errors using Schema validation mode.

Using oraxml to Validate Against a DTD

Change into the SORACLE_HOME/xdk/demo/java/parser/common directory.
Example 5-6 shows how you can validate family.xml against family.dtd by
executing the following on the command line.

Example 5-6 Using oraxml to Validate Against a DTD

oraxml -dtd -enc family.xml

You should obtain the following output:

The encoding of the input file: UTF-8
The input XML file is parsed without errors using DTD validation mode.

Validating XML with XML Schemas

This section includes the following topics:

= Validating Against Internally Referenced XML Schemas
= Validating Against Externally Referenced XML Schemas
= Validating a Subsection of an XML Document

= Validating XML from a SAX Stream

= Validating XML from a DOM

= Validating XML from Designed Types and Elements

= Validating XML with the XSDValidator Bean

Validating Against Internally Referenced XML Schemas

The SORACLE_HOME/xdk/demo/java/schema/XSDSample. java program
illustrates how to validate against an implicit XML Schema. The validation mode is
implicit because the XML schema is referenced in the instance document itself.

Follow the steps in this section to write programs that use the
setValidationMode () method of the oracle.xml .parser.v2.DOMParser
class:

1. Create a DOM parser to use for the validation of an instance document. The
following code fragment from XSDSample. java illustrates how to create the
DOMParser object:

public class XSDSample
{
public static void main(String[] args) throws Exception
{
if (args.length != 1)
{
System.out.println("Usage: java XSDSample <filename>");
return;

5-12 Oracle XML Developer's Kit Programmer's Guide

Validating XML with XML Schemas

}
process (args[0]);

}

public static void process (String xmlURI) throws Exception
{

DOMParser dp = new DOMParser();

URL url createURL (xmlURI) ;

}

createURL () is a helper method that constructs a URL from a filename passed to
the program as an argument.

2. Set the validation mode for the validating DOM parser with the
DOMParser.setValidationMode () method. For example, XSDSample. java
shows how to specify XML schema validation:

dp.setValidationMode (XMLParser.SCHEMA_ VALIDATION) ;
dp.setPreserveWhitespace (true) ;

3. Set the output error stream with the DOMParser.setErrorStream() method.
For example, XSDSample. java sets the error stream for the DOM parser object as
follows:

dp.setErrorStream (System.out);

4. Validate the instance document with the DOMParser .parse () method. You do
not have to create an XML schema object explicitly because the schema is
internally referenced by the instance document. For example, XSDSample. java
validates the instance document as follows:

try
{
System.out.println("Parsing "+xmlURI);
dp.parse(url) ;
System.out.println("The input file <"+xmlURI+"> parsed without errors");

}
catch (XMLParseException pe)

{

System.out.println("Parser Exception: " + pe.getMessage());

}

catch (Exception e)

{
System.out.println("NonParserException: " + e.getMessage());

}

Validating Against Externally Referenced XML Schemas

The $ORACLE_HOME/xdk/demo/java/schema/XSDSetSchema. java program
illustrates how to validate an XML schema explicitly. The validation mode is explicit
because you use the XSDBuilder class to specify the schema to use for validation: the
schema is not specified in the instance document as in implicit validation.

Follow the basic steps in this section to write Java programs that use the build ()
method of the oracle.xml .parser.schema.XSDBuilder class:

Using the Schema Processor for Java 5-13

Validating XML with XML Schemas

1. Build an XML schema object from the XML schema document with the
XSDBuilder.build() method. The following code fragment from
XSDSetSchema. java illustrates how to create the object:

public class XSDSetSchema
{

public static void main(String[] args) throws Exception

{
if (args.length != 2)

System.out.println("Usage: java XSDSample <schema_file> <xml_file>");
return;

}

XSDBuilder builder = new XSDBuilder();
URL url = createURL(args([0]);

// Build XML Schema Object
XMLSchema schemadoc = (XMLSchema)builder.build(url);
process (args[1], schemadoc);

The createURL () method is a helper method that constructs a URL from the
schema document filename specified on the command line.

2. Create a DOM parser to use for validation of the instance document. The
following code from XSDSetSchema . java illustrates how to pass the instance
document filename and XML schema object to the process () method:

public static void process(String xmlURI, XMLSchema schemadoc)
throws Exception

{
DOMParser dp = new DOMParser () ;
URL url = createURL (xmlURI);

3. Specify the schema object to use for validation with the
DOMParser . setXMLSchema () method. This step is not necessary in implicit
validation mode because the instance document already references the schema.
For example, XSDSetSchema . java specifies the schema as follows:

dp.setXMLSchema (schemadoc) ;
4. Set the validation mode for the DOM parser object with the

DOMParser.setValidationMode () method. For example, XSDSample. java
shows how to specify XML schema validation:

dp.setValidationMode (XMLParser.SCHEMA_VALIDATION) ;

dp.setPreserveWhitespace (true) ;

5. Set the output error stream for the parser with the
DOMParser.setErrorStream () method. For example, XSDSetSchema . java
sets it as follows:

dp.setErrorStream (System.out);

6. Validate the instance document against the XML schema with the
DOMParser .parse () method. For example, XSDSetSchema . java includes the
following code:

try

5-14 Oracle XML Developer's Kit Programmer's Guide

Validating XML with XML Schemas

System.out.println("Parsing "+xmlURI);

dp.parse (url);

System.out.println("The input file <"+xmlURI+"> parsed without errors");
}
catch (XMLParseException pe)
{

System.out.println("Parser Exception: " + pe.getMessage());

}
catch (Exception e)
{
System.out.println ("NonParserException: " + e.getMessage());

}

Validating a Subsection of an XML Document

In LAX mode, you can validate parts of the XML content of an instance document
without validating the whole document. A LAX parser indicates that the processor
should perform validation for elements in the instance document that are declared in
an associated XML schema. The processor does not consider the instance document
invalid if it contains no elements declared in the schema.

By using LAX mode, you can define the schema only for the part of the XML that you
want to validate. The SORACLE_HOME /xdk/demo/java/schema/XSDLax . java
program illustrates how to use LAX validation. The program follows the basic steps
described in "Validating Against Externally Referenced XML Schemas" on page 5-13:

1. Build an XML schema object from the user-specified XML schema document.
Create a DOM parser to use for validation of the instance document.

Specify the XML schema to use for validation.

Set the validation mode for the DOM parser object.

Set the output error stream for the parser.

@ o » w N

Validate the instance document against the XML schema by calling
DOMParser .parse ().

To enable LAX validation, the program sets the validation mode in the parser to
SCHEMA_LAX_VALIDATION rather than to SCHEMA_VALIDATION. The following code
fragment from XSDLax . java illustrates this technique:

dp.setXMLSchema (schemadoc) ;
dp.setValidationMode (XMLParser.SCHEMA_LAX_VALIDATION) ;
dp.setPreserveWhitespace (true);

You can test LAX validation by running the sample program as follows:

java XSDLax embeded_xsgl.xsd embeded_xsqgl.xml

Validating XML from a SAX Stream

The SORACLE_HOME/xdk/demo/java/schema/xsdsax.java program illustrates
how to validate an XML document received as a SAX stream. You instantiate an
XSDValidator and register it with the SAX parser as the content handler.

Follow the steps in this section to write programs that validate XML from a SAX
stream:

Using the Schema Processor for Java 5-15

Validating XML with XML Schemas

1. Build an XML schema object from the user-specified XML schema document by
invoking the XSDBuilder.build () method. The following code fragment from
illustrates how to create the object:

XSDBuilder builder = new XSDBuilder();
URL url = XMLUtil.createURL(args([0]);

// Build XML Schema Object
XMLSchema schemadoc = (XMLSchema)builder.build(url);
process (args[1], schemadoc);

createURL () is a helper method that constructs a URL from the filename
specified on the command line.

2. Create a SAX parser (SAXParser object) to use for validation of the instance
document. The following code fragment from saxxsd. java passes the handles
to the XML document and schema document to the process () method:

process(args[1l], schemadoc);

public static void process(String xmlURI, XMLSchema schemadoc)
throws Exception
{

SAXParser dp = new SAXParser();

3. Configure the SAX parser. The following code fragment sets the validation mode
for the SAX parser object with the XSDBuilder.setValidationMode ()
method:

dp.setPreserveWhitespace (true);
dp.setValidationMode (XMLParser .NONVALIDATING) ;

4. Create and configure a validator (XSDvValidator object). The following code
fragment illustrates this technique:

XMLError err;

e%% = new XMLError();

255Validator validator = new XSDValidator();
&éiidator.setError(err);

5. Specify the XML schema to use for validation by invoking the
XSDBuilder.setXMLProperty () method. The first argument is the name of
the property, which is fixedSchema, and the second is the reference to the XML
schema object. The following code fragment illustrates this technique:

validator.setXMLProperty (XSDNode.FIXED_SCHEMA, schemadoc);

6. Register the validator as the SAX content handler for the parser. The following
code fragment illustrates this technique:

dp.setContentHandler (validator) ;

5-16 Oracle XML Developer's Kit Programmer's Guide

Validating XML with XML Schemas

Validate the instance document against the XML schema by invoking the
SAXParser.parse () method. The following code fragment illustrates this
technique:

dp.parse (url);

Validating XML from a DOM

The SORACLE_HOME/xdk/demo/java/schema/xsddonm. java program shows how
to validate an instance document by obtain a DOM representation of the document
and using an XSDValidator object to validate it.

The xsddom. java program follows these steps:

1.

Build an XML schema object from the user-specified XML schema document by
invoking the XSDBuilder.build () method. The following code fragment from
illustrates how to create the object:

XSDBuilder builder = new XSDBuilder();
URL url = XMLUtil.createURL(args[0]);

XMLSchema schemadoc = (XMLSchema)builder.build(url);
process (args[1l], schemadoc);

createURL () is a helper method that constructs a URL from the filename
specified on the command line.

Create a DOM parser (DOMParser object) to use for validation of the instance
document. The following code fragment from domxsd. java passes the handles
to the XML document and schema document to the process () method:

process(args[1l], schemadoc);

public static void process(String xmlURI, XMLSchema schemadoc)
throws Exception
{

DOMParser dp = new DOMParser () ;

Configure the DOM parser. The following code fragment sets the validation mode
for the parser object with the DOMParser.setValidationMode () method:

dp.setPreserveWhitespace (true);
dp.setValidationMode (XMLParser .NONVALIDATING) ;
dp.setErrorStream (System.out);

Parse the instance document. The following code fragment illustrates this
technique:

dp.parse (url);
Obtain the DOM representation of the input document. The following code
fragment illustrates this technique:

XMLDocument doc = dp.getDocument () ;

Create and configure a validator (XSDValidator object). The following code
fragment illustrates this technique:

XMLError err;

Using the Schema Processor for Java 5-17

Validating XML with XML Schemas

err = new XMLError();
XSDValidator validator = new XSDValidator();
validator.setError (err);

7. Specify the schema object to use for validation by invoking the
XSDBuilder.setXMLProperty () method. The first argument is the name of
the property, which in this example is fixedSchema, and the second is the
reference to the schema object. The following code fragment illustrates this
technique:

validator.setXMLProperty (XSDNode.FIXED_SCHEMA, schemadoc);

8. Obtain the root element (XMLElement) of the DOM tree and validate. The
following code fragment illustrates this technique:

XMLElement root = (XMLElement)doc.getDocumentElement () ;
XMLElement copy = (XMLElement)root.validateContent (validator, true);
copy.print (System.out) ;

Validating XML from Designed Types and Elements

The SORACLE_HOME/xdk/demo/java/schema/xsdproperty.java program
shows how to configure the XML Schema processor to validate an XML document
based on a complex type or element declaration.

The xsdproperty. java program follows these steps:

1. Create String objects for the instance document name, XML schema name, root
node namespace, root node local name, and specification of element or complex
type ("true" means the root node is an element declaration). The following code
fragment illustrates this technique:

String xmlfile = args[0];
String xsdfile = args[l];

String ns = args([2]; //namespace for the root node

String nm = args[3]; //root node's local name

String el = args([4]; //true if root node is element declaration,
// otherwise, the root node is a complex type

2. Create an XSD builder and use it to create the schema object. The following code
fragment illustrates this technique:

XSDBuilder builder = new XSDBuilder();
URL url = XMLUtil.createURL(xsdfile);
XMLSchema schema;

schema = (XMLSchema) builder.build(url);

3. Obtain the node. Invoke different methods depending on whether the node is an
element declaration or a complex type:

s If the node is an element declaration, pass the local name and namespace to
the getElement () method of the schema object.

» If the node is an element declaration, pass the namespace, local name, and root
complex type to the getType () method of the schema object.

xsdproperty . java uses the following control structure:

5-18 Oracle XML Developer's Kit Programmer's Guide

Validating XML with XML Schemas

QxName gname = new QxName (ns, nm);
XSDNode nd;
if (el.equals("true"))

nd = schema.getElement (ns, nm);
/* process ... */

}

else

{
nd = schema.getType(ns, nm, XSDNode.TYPE) ;
/* process ... */

}

After obtaining the node, create a new parser and set the schema to the parser to
enable schema validation. The following code fragment illustrates this technique:

DOMParser dp = new DOMParser();
URL url = XMLUtil.createURL (xmlURI);

Set properties on the parser and then parse the URL. Invoke the
schemaValidatorProperty () method as follows:

a. Set the root element or type property on the parser to a fully qualified name.

For a top-level element declaration, set the property name to
XSDNode .ROOT_ELEMENT and the value to a QName, as illustrated by the
processl () method.

For a top-level type definition, set the property name to
XSDNode .ROOT_TYPE and the value to a QName, as illustrated by the
process?2 () method.

b. Set the root node property on the parser to an element or complex type node.

For an element node, set the property name to XSDNode . ROOT_NODE and the
value to an XSDElement node, as illustrated by the process3 () method.

For a type node, set the property name to XSDNode . ROOT_NODE and the
value to an XSDComplexType node, as illustrated by the process3 ()
method.

The following code fragment shows the sequence of method invocation:

if (el.equals("true"))

nd = schema.getElement (ns, nm);
processl (xmlfile, schema, gname);
process3 (xmlfile, schema, nd);
}
else
{
nd = schema.getType(ns, nm, XSDNode.TYPE);
process2 (xmlfile, schema, gname);
process3 (xmlfile, schema, nd);

}

The processing methods are implemented as follows:

static void processl (String xmlURI, XMLSchema schema, QxName gname)
throws Exception

{

Using the Schema Processor for Java 5-19

Validating XML with XML Schemas

/* create parser... */

dp.setXMLSchema (schema) ;

dp.setSchemaValidatorProperty (XSDNode.ROOT_ELEMENT, gname) ;
dp.setPreserveWhitespace (true);

dp.setErrorStream (System.out);

dp.parse (url);

static void process2 (String xmlURI, XMLSchema schema, QxName gname)
throws Exception

/* create parser... */

dp.setXMLSchema (schema) ;

dp.setSchemaValidatorProperty (XSDNode.ROOT_TYPE, gname) ;
dp.setPreserveWhitespace (true);

dp.setErrorStream (System.out);

dp.parse (url);

static void process3 (String xmlURI, XMLSchema schema, XSDNode node)
throws Exception

/* create parser... */

dp.setXMLSchema (schema) ;

dp.setSchemaValidatorProperty (XSDNode.ROOT_NODE, node);
dp.setPreserveWhitespace (true);

dp.setErrorStream (System.out);

dp.parse (url);

Validating XML with the XSDValidator Bean

The oracle.xml.schemavalidator.XSDValidator bean encapsulates the
oracle.xml.parser.schema.XSDValidator class and adds functionality for
validating a DOM tree. The parser builds the DOM tree for the instance document and
XML schema document and validates the instance document against the schema.

The XSDValidatorSample. java program in
$ORACLE_HOME/xdk/demo/java/transviewer illustrates how to use the
XSDValidator bean.

Follow the basic steps in this section to write Java programs that use the
XSDValidator bean:

1. Parse the instance document with the DOMParser .parse () method. The
following code fragment from XSDValidatorSample. java illustrates this
technique:

URL xmlinstanceurl, schemaurl;
XMLDocument xmldocl,xmldoc2;

// get the URL for the input files
xmlinstanceurl = createURL(args([0]);

// Parse the XML Instance document first
xmldocl = parseXMLDocument (xmlinstanceurl);

5-20 Oracle XML Developer's Kit Programmer's Guide

Tips and Techniques for Programming with XML Schemas

createURL () is a helper method that creates a URL from a filename. The
parseXMLDocument () method receives a URL as input and parses it with the
DOMParser .parse () method as follows:

DOMParser parser = new DOMParser();
parser.parse (xmlurl) ;
return parser.getDocument () ;

2. Parse the XML schema document with the DOMParser.parse () method. The
following code from XSDValidatorSample. java illustrates this technique:

schemaurl = createURL(args[l]);
xmldoc2 = parseXMLDocument (schemaurl) ;

3. Build the schema object from the parsed XML schema with the
XSDBuilder.build () method. The following code fragment from
XSDValidatorSample.java illustrates this technique:

XSDBuilder xsdbuild = new XSDBuilder();
xmlschema = (XMLSchema)xsdbuild.build(xmldoc2, createURL(args+"builder"));

4. Specify the schema object to use for validation by passing a reference to the
XSDValidator.setSchema () method. The following code fragment from
XSDValidatorSample. java creates the validator and sets the schema:

XSDValidator xsdval = new XSDValidator();
xsdval.setSchema (xmlschema) ;

5. Set the error output stream for the validator by invoking the
XSDValidator.setError () method. The following code fragment from
XSDhValidatorSample. java illustrates how to create the object:

Properties p = new Properties(System.getProperties());
p.load(new FileInputStream("demo.properties"));
System.setProperties (p);

XMLError err = new XMLError();
err.setErrorHandler (new DocErrorHandler());
xsdval.setError (err) ;

6. Validate the instance document against the schema by passing a reference to
instance document to the XSDValidator.validate () method. For example,
XSDValidatorSample. java includes the following code fragment:

xsdval.validate (xmldocl);

Tips and Techniques for Programming with XML Schemas
This section contains the following topics:
s Opverriding the Schema Location with an Entity Resolver

s Converting DTDs to XML Schemas

Using the Schema Processor for Java 5-21

Tips and Techniques for Programming with XML Schemas

Overriding the Schema Location with an Entity Resolver

When the XSDBuilder builds a schema, it may need to include or import other
schemas specified as URLs in the schemaLocation attribute. The xsdent . java
demo described in Table 5-3 illustrates this case. The document element in
xsdent .xml file contains the following attribute:

xsi:schemalocation = "http://www.somewhere.org/BookCatalogue
xsdent .xsd">

The xsdent . xsd document contains the following elements:

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.somewhere.org/BookCatalogue"
xmlns:catd = "http://www.somewhere.org/Digest"
xmlns:cat = "http://www.somewhere.org/BookCatalogue"
elementFormDefault="qualified">
<import namespace = "http://www.somewhere.org/Digest"
schemalocation = "xsdent-1.xsd" />

In some cases, you may want to override the schema locations specified in <import>
and supply the builder with the required schema documents. For example, you may
have downloaded the schemas documents from external Web sites and stored them in
a database. In such cases, you can set an entity resolver in the XSDBuilder.
XSDBuilder passes the schema location to the resolver, which returns an
InputStream, Reader, or URL as an InputSource. The builder can read the schema
documents from the InputSource.

The xsdent . java program illustrates how you can override the schema location
with an entity resolver. You must implement the EntityResolver interface,
instantiate the entity resolver, and set it in the XML schema builder. In the demo code,
sampleEntityResolverl returns InputSource as an InputStream whereas
sampleEntityResolver?2 returns InputSource as a URL.

Follow these basic steps:
1. Create a new XML schema builder as follows:

XSDBuilder builder = new XSDBuilder();

2. Set the builder to your entity resolver. An entity resolver is a class that implements
the EntityResolver interface. The purpose of the resolver is to enable the XML
reader to intercept any external entities before including them. The following code
fragment creates an entity resolver and sets it in the builder:

builder.setEntityResolver (new sampleEntityResolverl());

The sampleEntityResolverl class implements the resolveEntity ()
method. You can use this method to redirect external system identifiers to local
URIs. The source code is as follows:

class sampleEntityResolverl implements EntityResolver
{
public InputSource resolveEntity (String targetNS, String systemId)
throws SAXException, IOException
{
// perform any validation check if needed based on targetNS & systemId
InputSource mySource = null;
URL u = XMLUtil.createURL (systemId);
// Create input source with InputStream as input
mySource = new InputSource(u.openStream());
mySource.setSystemId(systemId) ;

5-22 Oracle XML Developer's Kit Programmer's Guide

Tips and Techniques for Programming with XML Schemas

return mySource;

}

Note that sampleEntityResolverl initializes the InputSource with a stream.
Build the XML schema object. The following code illustrates this technique:

schemadoc = builder.build(url);

Validate the instance document against the XML schema. The program executes
the following statement:

process (xmlfile, schemadoc);

The process () method creates a DOM parser, configures it, and invokes the
parse () method. The method is implemented as follows:

public static void process(String xmlURI, Object schemadoc)
throws Exception
{
DOMParser dp = new DOMParser();
URL url = XMLUtil.createURL (xmlURI);

dp.setXMLSchema (schemadoc) ;
dp.setValidationMode (XMLParser .SCHEMA_VALIDATION) ;
dp.setPreserveWhitespace (true);
dp.setErrorStream (System.out);
try {

dp.parse (url);

Converting DTDs to XML Schemas

Because of the power and flexibility of the XML Schema language, you may want to
convert your existing DTDs to XML Schema documents. The XDK API enables you to
perform this transformation.

The $ORACLE_HOME/xdk/demo/java/schema/DTD2Schema . java program
illustrates how to convert a DTD. You can test the program as follows:

java DTD2Schema dtd2schema.dtd dtd2schema.xml

Follow these basic steps to convert a DTD to an XML schema document:

1.

Parse the DTD with the DOMParser.parseDTD () method. The following code
fragment from DTD2Schema . java illustrates how to create the DTD object:

XSDBuilder builder = new XSDBuilder();
URL dtdURL = createURL(args[0]);
DTD dtd = getDTD(dtdURL, "abc");

The getDTD () method is implemented as follows:

private static DTD getDTD(URL dtdURL, String rootName)
throws Exception

{
DOMParser parser = new DOMParser();
DTD dtd;
parser.setValidationMode (true) ;
parser.setErrorStream(System.out) ;
parser.showWarnings (true) ;

Using the Schema Processor for Java 5-23

Tips and Techniques for Programming with XML Schemas

parser.parseDTD (dtdURL, rootName) ;
dtd = (DTD)parser.getDoctype();
return dtd;

}

2. Convert the DTD to an XML schema DOM tree with the
DTD.convertDTD2Sdhema () method. The following code fragment from
DTD2Schema. java illustrates this technique:

XMLDocument dtddoc = dtd.convertDTD2Schema () ;

3. Write the XML schema DOM tree to an output stream with the
XMLDocument .print () method. The following code fragment from
DTD2Schema . java illustrates this technique:

FileOutputStream fos = new FileOutputStream("dtd2schema.xsd.out");
dtddoc.print (fos);

4. Create an XML schema object from the schema DOM tree with the
XSDBuilder.build() method. The following code fragment from
DTD2Schema. java illustrates this technique:

XMLSchema schemadoc = (XMLSchema)builder.build(dtddoc, null);

5. Validate an instance document against the XML schema with the
DOMParser .parse () method. The following code fragment from
DTD2Schema. java illustrates this technique:

validate(args[1l], schemadoc);

The validate () method is implemented as follows:

DOMParser dp = new DOMParser();
URL url = createURL (xmlURI);
dp.setXMLSchema (schemadoc) ;
dp.setValidationMode (XMLParser.SCHEMA_VALIDATION) ;
dp.setPreserveWhitespace (true);
dp.setErrorStream (System.out);
try
{
System.out.println("Parsing "+xmlURI);
dp.parse (url);
System.out.println("The input file <"+xmlURI+"> parsed without errors");

5-24 Oracle XML Developer's Kit Programmer's Guide

6

Using the JAXB Class Generator

This chapter contains the following topics:

Introduction to the JAXB Class Generator
Using the JAXB Class Generator: Overview
Processing XML with the JAXB Class Generator

Note: Use the JAXB class generator for new applications in order to
use the object binding feature for XML data. The Oracle9i class
generator for Java is deprecated. Oracle Database 10g supports the
Oracle9i class generator for backward compatibility.

Introduction to the JAXB Class Generator

This section provides an introduction to the Java Architecture for XML Binding
(JAXB). It discusses the following topics:

Prerequisites

Prerequisites

Standards and Specifications

Marshalling and Unmarshalling with JAXB
Validation with JAXB

JAXB Customization

This chapter assumes that you already have some familiarity with the following topics:

Java Architecture for XML Binding (JAXB). If you require a more thorough
introduction to JAXB than is possible in this chapter, consult the XML resources
listed in "Related Documents" on page xxxvi of the preface.

XML Schema language. Refer to Chapter 5, "Using the Schema Processor for Java"
for an overview and links to suggested reading.

See Also:

http://java.sun.com/webservices/tutorial.html for an
extensive and excellent JAXB tutorial

Using the JAXB Class Generator 6-1

Introduction to the JAXB Class Generator

Standards and Specifications

The Oracle JAXB processor implements JSR-31 "The Java Architecture for XML
Binding (JAXB)", Version 1.0, which is a recommendation of the JCP (Java Community
Process). You can find the JAXB 1.0 specification at the following URL:

http://java.sun.com/xml/jaxb

The Oracle Database XDK implementation of the JAXB 1.0 specification does not
support the following optional features:

= Javadoc generation

» Fail Fast validation

= External customization file

s XML Schema concepts described in section E.2 of the specification

JSR is a Java Specification Request of the JCP. You can find a description of the JSR at
the following URL:

http://jcp.org/en/jsr/overview

See Also: Chapter 29, "XDK Standards” for a summary of the
standards supported by the XDK

JAXB Class Generator Features

The JAXB class generator for Java generates the interfaces and the implementation
classes corresponding to an XML Schema. Its principal advantage to Java developers is
automation of the mapping between XML documents and Java code, which enables
programs to use generated code to read, manipulate, and re-create XML data. The Java
classes, which can be extended, give the developer access to the XML data without
knowledge of the underlying XML data structure.

In short, the Oracle JAXB class generator provides the following advantages for XML
application development in Java:

m Speed

Because the schema-to-code conversion is automated, you can rapidly generate
Java code from an input XML schema.

s Ease of use

You can call generated get and set methods rather than code your own from
scratch.

= Automated data conversion
You can automate the conversion of XML document data into Java datatypes.
s Customization

JAXB provides a flexible framework that enables you to customize the binding of
XML elements and attributes.

Marshalling and Unmarshalling with JAXB

JAXB is an API and set of tools that maps XML data to Java objects. JAXB simplifies
access to an XML document from a Java program by presenting the XML document to
the program in a Java format.

You can use the JAXB API and tools to perform the following basic tasks:

6-2 Oracle XML Developer's Kit Programmer's Guide

Introduction to the JAXB Class Generator

Generate and compile JAXB classes from an XML schema with the orajaxb
command-line utility.

To use the JAXB class generator to generate Java classes you must provide it with
an XML schema. DTDs are not supported by JAXB. As explained in "Converting
DTDs to XML Schemas" on page 5-23, however, you can use the DTD2Schema
program to convert a DTD to an XML schema. Afterwards, you can use the JAXB
class generator to generate classes from the schema.

The JAXB compiler generates Java classes that map to constraints in the source
XML schema. The classes implements get and set methods that you can use to
obtain and specify data for each type of element and attribute in the schema.

Process XML documents by instantiating the generated classes in a Java program.

Specifically, you can write a program that uses the JAXB binding framework to
perform the following tasks:

a. Unmarshal the XML documents.

As explained in the JAXB specification, unmarshalling is defined as moving
data from an XML document to the Java-generated objects.

b. Validate the XML documents.

You can validate before or during the unmarshalling of the contents into the
content tree. You can also validate on demand by calling the validation API on
the Java object. Refer to "Validation with JAXB" on page 6-3.

¢. Modify Java content objects.

The content tree of data objects represents the structure and content of the
source XML documents. You can use the set methods defined for a class to
modify the content of elements and attributes.

d. Marshal Java content objects back to XML.

In contrast to unmarshalling, marshalling is creating an XML document from
Java objects by traversing a content tree of instances of Java classes. You can
serialize the data to a DOM tree, SAX content handler, transformation result,
or output stream.

Validation with JAXB

A Java content tree is considered valid with respect to an XML schema when
marshalling the tree generates a valid XML document.

JAXB applications can perform validation in the following circumstances:

Unmarshalling-time validation that notifies the application of errors and warnings
during unmarshalling. If unmarshalling includes validation that is error-free, then
the input XML document and the Java content tree are valid.

On-demand validation of a Java content tree initiated by the application.

Fail-fast validation that gives immediate results while updating the Java content
tree with set and get methods. As specified in "Standards and Specifications" on
page 6-2, fail-fast validation is an optional feature in the JAXB 1.0 specification that
is not supported in the XDK implementation of the JAXB class generator.

JAXB applications must be able to marshal a valid Java content tree, but they are not
required to ensure that the Java content tree is valid before calling one of the
marshalling APIs. The marshalling process does not itself validate the content tree.

Using the JAXB Class Generator 6-3

Using the JAXB Class Generator: Overview

Programs are merely required to throw a javax/xml/bind/MarshalException
when marshalling fails due to invalid content.

JAXB Customization

The declared element and type names in an XML schema do not always provide the
most useful Java class names. You can override the default JAXB bindings by using
custom binding declarations, which are described in the JAXB specification. These
declarations enable you to customize your generated JAXB classes beyond the
XML-specific constraints in an XML schema to include Java-specific refinements such
as class and package name mappings.

You can annotate the schema to perform the following customizations:

Bind XML names to user-defined Java class names
Name the package, derived classes, and methods
Choose which elements to bind to which classes

Decide how to bind each attribute and element declaration to a property in the
appropriate content class

Choose the type of each attribute-value or content specification

Several of the demos programs listed in Table 6-2 illustrate JAXB customizations.

See Also:

s Chapter 4, "Customizing JAXB Bindings," in the JAXB tutorial at
http:/ /java.sun.com/webservices/tutorial.html

s "Customizing a Class Name in a Top-Level Element" on page 6-13
for a detailed explanation of a customization demo

Using the JAXB Class Generator: Overview

This section contains the following topics:

Using the JAXB Processor: Basic Process
Running the XML Schema Processor Demo Programs

Using the JAXB Class Generator Command-Line Utility

Using the JAXB Processor: Basic Process
The XDK JAXB API exposes the following packages:

javax.xml.bind, which provides a runtime binding framework for client
applications including unmarshalling, marshalling, and validation

javax.xml.bind.util, which provides useful client utility classes

The most important classes and interfaces in the javax.xml .bind package are
described in Table 6—1. These form the core of most JAXB applications.

6-4 Oracle XML Developer's Kit Programmer's Guide

Using the JAXB Class Generator: Overview

Table 6—1 javax.xml.bind Classes and Interfaces

Class/Interface

Description

Methods

JAXBContext class

Provides an abstraction for
managing the XML /Java binding
information necessary to
implement the JAXB binding
framework operations: unmarshal,
marshal, and validate. A client
application obtains new instances
of this class by invoking the
newInstance () method.

The principal methods are as follows:

newInstance () creates a JAXB content class. Supply
this method the name of the package containing the
generated classes.

createMarshaller () creates a marshaller that you
can use to convert a content tree to XML.

createUnmarshaller () creates an unmarshaller that
you can use to convert XML to a content tree.

createValidator () creates a Validator object that
can validate a java content tree against its source schema.

Marshaller interface

Governs the process of serializing
Java content trees into XML data.

The principal methods are as follows:

getEventHandler () returns the current or default
event handler.

getProperty () obtains the property in the underlying
implementation of marshaller.

marshal () marshals the content tree into a DOM, SAX2
events, output stream, transformation result, or Writer.

setEventHandler () creates a Validator object that
validates a java content tree against its source schema.

Unmarshaller interface

Governs the process of
deserializing XML data into newly
created Java content trees,
optionally validating the XML data
as it is unmarshalled.

The principal methods are as follows:

getEventHandler () returns the current or default
event handler.

getUnmarshallerHandler () returns an unmarshaller
handler object usable as a component in an XML
pipeline.

isvValidating () indicates whether the unmarshaller is
set to validate mode.

setEventHandler () allows an application to register a
ValidationEventHandler.

setValidating () specifies whether the unmarshaller
should validate during unmarshal operations.

marshal () unmarshals XML data from the specified
file, URL, input stream, input source, SAX, or DOM.

Validator interface

Controls the validation of content
trees during runtime. Specifically,
this interface controls on-demand
validation, which enables clients to
receive data about validation errors
and warnings detected in the Java
content tree.

The principal methods are as follows:

getEventHandler () returns the current or default
event handler.

setEventHandler () allows an application to register a
ValidationEventHandler.

validate () validates Java content trees on-demand at
runtime. This method can validate any arbitrary subtree
of the Java content tree.

validateRoot () validates the Java content tree rooted
at rootObj. You can use this method to validate an
entire Java content tree.

Figure 6-1 depicts the process flow of a framework that uses the JAXB class generator.

Using the JAXB Class Generator 6-5

Using the JAXB Class Generator: Overview

Figure 6—-1 JAXB Class Generator for Java

P | XML Parser for Java

XML XML
Schema Schema

R

Oracle JAXB) j Jc — Java Application [
C

Class Generator —_—

Je I
XML
Document

Java classes based
on XML Schema
(one class per element)

The basic stages of the process illustrated in Figure 61 are as follows:

1.

The XML parser parses the XML schema and sends the parsed data to the JAXB
class generator.

The class generator creates Java classes and interfaces based on the input XML
schema.

By default, one XML element or type declaration generates one interface and one
class. For example, if the schema defines an element named <anElement>, then
by default the JAXB class generator generates a source file named

AnElement . java and another named AnElementImpl . java. You can use
customize binding declarations to override the default binding of XML Schema
components to Java representations.

The Java compiler compiles the . java source files into class files. All of the
generated classes, source files, and application code must be compiled.

Your Java application uses the compiled classes and the binding framework to
perform the following types of tasks:

— Create a JAXB context. You use this context to create the marshaller and
unmarshaller.

— Build object trees representing XML data that is valid against the XML
schema. You can perform this task by either unmarshalling the data from an
XML document that conforms to the schema or instantiating the classes.

- Access and modify the data.

- Optionally validate the modifications to the data relative to the constraints
expressed in the XML schema.

— Marshal the data to new XML documents.

See Also:

m http://java.sun.com/xml/jaxb/fag.html for more
information on JAXB

s Oracle Database XML Java API Reference for details of the JAXB API

s "Processing XML with the JAXB Class Generator" on page 6-9 for
detailed explanations of JAXB processing

6-6 Oracle XML Developer's Kit Programmer's Guide

Using the JAXB Class Generator: Overview

Running the XML Schema Processor Demo Programs

Demo programs for the JAXB class generator for Java are included in
$ORACLE_HOME/xdk/demo/java/jaxb. Specifically, the XDK includes the JAXB
demos listed in Table 6-2.

Table 6-2 JAXB Class Generator Demos

Program

Subdirectory within Oracle Home

Demonstrates . . .

SampleAppl.java

/xdk/demo/java/jaxb/Samplel

The binding of top-level element and complexType definitions
in the samplel.xsd schema to Java classes.

SampleApp2.java /xdk/demo/java/jaxb/Sample2 The binding of a top-level element with an inline simpleType
definition in the sample?2 . xsd schema.

SampleApp3.java /xdk/demo/java/jaxb/Sample3 The binding of a top-level complexType element that is
derived by extension from another top-level complexType
definition. Refer to "Binding Complex Types" on page 6-10 for a
detailed explanation of this program.

SampleAppd.java /xdk/demo/java/jaxb/Sampled The binding of a content model within a complexType that
refers to a top-level named group.

SampleApp5.java /xdk/demo/java/jaxb/Sampleb The binding of <choice> with maxOccurs unbounded within
a complexType.

SampleApp6.java /xdk/demo/java/jaxb/Sample6 The binding of atomic datatypes.

SampleApp7.java /xdk/demo/java/jaxb/Sample7 The binding a complexType definition in which
mixed="true".

SampleApp8.java /xdk/demo/java/jaxb/Sample8 The binding of elements and types declared in two different

namespaces.

SampleApp9.java

/xdk/demo/java/jaxb/Sample9

The customization of a Java package name.

SampleAppl0.java /xdk/demo/java/jaxb/Samplel0 The customization of class name in a top-level element. Refer to
"Customizing a Class Name in a Top-Level Element" on
page 6-13 for a detailed explanation of this program.

SampleAppll.java /xdk/demo/java/jaxb/Samplell The customization of class name of a local element occurring in
a repeating model group declared inside a complexType
element.

SampleAppl2.java /xdk/demo/java/jaxb/Samplel2 The customization of the attribute name.

SampleAppl3.java /xdk/demo/java/jaxb/Samplel3 The javaType customization specified on a global
simpleType. The javaType customization specifies the parse
and print method declared on a user-defined class.

SampleAppld.java /xdk/demo/java/jaxb/Sampleld The customization of the typesafe enum class name.

You can find documentation that describes how to compile and run the sample
programs in the README in the same directory. The basic steps are as follows:

1.

Change into the SORACLE_HOME/xdk/demo/java/jaxb directory (UNIX) or

$ORACLE_HOME$\xdk\demo\ java\ jaxb directory (Windows).

Make sure that your environment variables are set as described in "Setting Up the

Java XDK Environment" on page 2-5.

Run make (UNIX) or Make .bat (Windows) at the system prompt. The make

utility performs the following sequential actions for each sample subdirectory:

a. Runs the orajaxb utility to generate Java class files based on an input XML
schema. For most of the demos, the output classfiles are written to the
generated subdirectory. For example, the make file performs the following
commands for the samplel.xsd schema in the Samplel subdirectory:

cd ./Samplel; $(JAVA_HOME) /bin/java -classpath "$(MAKE_CLASSPATH)" \
oracle.xml.jaxb.orajaxb -schema samplel.xsd -targetPkg generated; echo;

Using the JAXB Class Generator 6-7

Using the JAXB Class Generator: Overview

b. Runs the javac utility to compile the Java classes. For example, the make
utility performs the following commands for the Java class files in the
Samplel/generated/ subdirectory:

cd ./Samplel/generated; $(JAVA_HOME) /bin/javac -classpath \
"$ (MAKE_CLASSPATH) " *.java

c. Runs the javac utility to compile a sample Java application that uses the
classes compiled in the preceding step. For example, the make utility compiles
the SampleAppl.java program:

cd ./Samplel; $(JAVA_HOME) /bin/javac -classpath "$(MAKE_CLASSPATH)" \
SampleAppl.java

d. Runs the sample Java application and writes the results to a log file. For
example, the make utility executes the SampleAppl class and writes the
output to samplel.out:

cd ./Samplel; $(JAVA_HOME)/bin/java -classpath "$(MAKE_CLASSPATH)" \
SampleAppl > samplel.out

Using the JAXB Class Generator Command-Line Utility

The XDK includes orajaxb, which is a command-line Java interface that generates
Java classes from input XML schemas. The SORACLE_HOME/bin/orajaxb and
$ORACLE_HOMES%\bin\orajaxb.bat shell scripts execute the

oracle.xml. jaxb.orajaxb class. To use orajaxb ensure that your CLASSPATH is
set as described in "Setting Up the Java XDK Environment” on page 2-5.

Table 6-3 lists the orajaxb command-line options.

Table 6-3 orajaxb Command-Line Options

Option Purpose
-help Prints the help message.
-version Prints the release version.

-outputdir OutputDir Specifies the directory in which to generate the Java source
files. If the schema has a namespace, then the program
generates the java code in the package (corresponding to the
namespace) referenced from the outputDir. By default, the
current directory is the outputDir.

-schema SchemaFile Specifies the input XML schema.

-targetPkyg targetPkg Specifies the target package name. This option overrides any
binding customization for package name as well as the default
package name algorithm defined in the JAXB Specification.

-interface Generates the interfaces only.
-verbose Lists the generated classes and interfaces.
-defaultCus fileName Generates the default customization file.

-extension Allows vendor specific extensions and does not strictly follow
the compatibility rules specified in Appendix E.2 of the JAXB
1.0 specification. When specified, the program ignores JAXB 1.0
unsupported features such as notations, substitution groups,
and any attributes.

6-8 Oracle XML Developer's Kit Programmer's Guide

Processing XML with the JAXB Class Generator

Using the JAXB Class Generator Command-Line Utility: Example

To test orjaxb, change into the SORACLE_HOME/xdk/demo/java/jaxb/Samplel
directory. If you have run make, then the directory should contain the following files:

SampleAppl.class
SampleAppl.java
generated/
samplel.out
samplel.xml
samplel.xsd

The sample.xsd file is the XML schema associated with samplel.xml. The
generated/ subdirectory contains the classes generated from the input schema. You
can test orajaxb by deleting the contents of generated/ and regenerating the
classes as follows:

rm generated/*
orajaxb -schema samplel.xsd -targetPkg generated -verbose
The terminal should display the following output:

generated/CType.java
generated/AComplexType.java
generated/AnElement.java
generated/RElemOfCTypeInSameNs. java
generated/RType. java
generated/RElemOfSTypeInSameNs. java

generated/CTypeImpl.java
generated/AComplexTypeImpl.java
generated/AnElementImpl.java
generated/RElemOfCTypeInSameNsImpl. java
generated/RTypelmpl.java
generated/RElemOfSTypeInSameNsImpl . java
generated/ObjectFactory.java

JAXB Features Not Supported in the XDK

The Oracle Database XDK implementation of the JAXB specification does not support
the following features:

= Javadoc generation

= XML Schema component "any" and substitution groups

See Also: http://java.sun.com/xml/downloads/jaxb.html
for the JAXB specification

Processing XML with the JAXB Class Generator

This section contains the following topics:
= Binding Complex Types

= Customizing a Class Name in a Top-Level Element

Using the JAXB Class Generator 6-9

Processing XML with the JAXB Class Generator

Binding Complex Types

The sample3. java program illustrates how to bind a complex type definition to a
Java content interface. One complex type defined in the XML schema is derived by
extension from another complex type.

Defining the Schema

Example 6-1 illustrates the XML data document that provides the input to the sample
application. The sample3.xml document describes the address of an employee.

Example 6—-1 sample3.xml

<?xml version="1.0"?>
<myAddress xmlns = "http://www.oracle.com/sample3/"
xmlns:xsi = "http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation = "http://www.oracle.com/sample3 sample3.xsd">
<name>James Bond</name>
<doorNumber>420</doorNumber>
<street>Oracle parkway</street>
<city>Redwood shores</city>
<state>CA</state>
<zip>94065</zip>
<country>United States</country>
</myAddress>

The XML schema shown in Example 6-2 defines the structure that you use to validate
sample3.xml. The schema defines two complex types and one element, which are
defined as follows:

s The first complex type, which is named Address, is a sequence of elements. Each
element in the sequence describes one part of the address: name, door number,
and so forth.

s The second complex type, which is named USAddress, uses the <extension
base="exp:Address"> element to extend Address by adding U.S.-specific
elements to the Address sequence: state, zip, and so forth. The exp prefix
specifies the http: //www.oracle.com/sample3/ namespace.

» The element is named myAddress and is of type exp: USAddress. The exp
prefix specifies the http: //www.oracle.com/sample3/ namespace. In
sample3.xml, the myAddress top-level element, which is in namespace
http://www.oracle.com/sample3/, conforms to the schema definition.

Example 6-2 sample3.xsd

<?xml version="1.0"?>

<!-- Binding a complex type definition to java content interface
The complex type definition is derived by extension
-—>

<schema xmlns = "http://www.w3.org/2001/XMLSchema"
xmlns:exp="http://www.oracle.com/sample3/"
targetNamespace="http://www.oracle.com/sample3/"
elementFormDefault="qualified">

<complexType name="Address">
<sequence>
<element name="name" type="string"/>
<element name="doorNumber" type="short"/>

6-10 Oracle XML Developer's Kit Programmer's Guide

Processing XML with the JAXB Class Generator

<element name="street" type="string"/>
<element name="city" type="string"/>
</sequence>
</complexType>

<complexType name="USAddress">
<complexContent>
<extension base="exp:Address">
<sequence>
<element name="state" type="string"/>
<element name="zip" type="integer"/>
<element name="country" type="string"/>
</sequence>
</extension>
</complexContent>
</complexType>

<element name="myAddress" type="exp:USAddress"/>

</schema>

Generating and Compiling the Java Classes

If you have an XML document and corresponding XML schema, then the next stage of
processing is to generate the Java classes from the XML schema. You can use the JAXB
command-line interface described in "Using the JAXB Class Generator Command-Line
Utility" on page 6-8 to perform this task.

Assuming that your environment is set up as described in "Setting Up the Java XDK
Environment" on page 2-5, you can create the source files in the generated package
as follows:

cd SORACLE_HOME/xdk/demo/java/jaxb/Sample3
orajaxb -schema samplel.xsd -targetPkg generated

The preceding orajaxb command should create the following source files in the
. /generated/ subdirectory:

Address.java
AddressImpl.java
MyAddress.java
MyAddressImpl.java
ObjectFactory.java
USAddress.java
USAddressImpl.java

The complex types Address and USAddress each has two associated source files, as
does the element MyAddress. The source file named after the element contains the
interface; the file with the suffix Impl contains the class that implements the interface.
For example, Address . java contains the interface Address, whereas
AddressImpl. java contains the class that implements Address.

The content of the Address . java source file is shown in Example 6-3.

Example 6-3 Address.java

package generated;

public interface Address

{
public void setName(java.lang.String n);
public java.lang.String getName() ;

Using the JAXB Class Generator 6-11

Processing XML with the JAXB Class Generator

public void setDoorNumber (short d);
public short getDoorNumber () ;
public void setStreet(java.lang.String s);
public java.lang.String getStreet();
public void setCity(java.lang.String c);
public java.lang.String getCity();

}

The Address complex type defined a sequence of elements: name, doorNumber,
street, and city. Consequently, the Address interface includes a get and set
method signature for each of the four elements. For example, the interface includes
getName () for retrieving data in the <name> element and setName () for modifying
data in this element.

You can compile the Java source files with javac as follows:

cd SORACLE_HOME/xdk/demo/java/jaxb/Sample3/generated
javac *.java

Processing the XML Data

Sample3. java shows how you can process the sample3.xml document by using
the Java class files that you generated in "Generating and Compiling the Java Classes"
on page 6-11. The sample program unmarshals the XML data document, marshals it,
and uses the generated classes to print and modify the address data.

The Sample3 . java program processes the data as follows:

1. Create strings for the XML data document file name and the name of the directory
that contains the generated classes. This name is the package name. For example:

String fileName = "sample3.xml";
String instancePath = "generated";

2. Instantiate a JAXB context by invoking JAXBContext .newInstance (). A client
application obtains a new instance of this class by initializing it with a context
path. The path contains a list of Java package names that contain the interfaces
available to the marshaller. The following statement illustrates this technique:

JAXBContext jc = JAXBContext.newInstance(instancePath);
3. Instantiate the unmarshaller. The Unmarshaller class governs the process of

deserializing XML data into newly created objects, optionally validating the XML
data as it is unmarshalled. The following statement illustrates this technique:

Unmarshaller u = jc.createUnmarshaller();
4. Unmarshal the XML document. Invoke the Unmarshaller.unmarshal ()
method to deserialize the sample3 .xml document and return the content trees as

an Object. You can create a URL from the XML filename by invoking the
fileToUrl () helper method. The following statement illustrates this technique:

Object obj = u.unmarshal (fileToURL(fileName)) ;
5. Instantiate a marshaller. The Marshaller class governs the process of serializing

Java content trees back into XML data. The following statement illustrates this
technique:

Marshaller m = jc.createMarshaller();

6. Marshal the content tree. Invoke the Marshaller.marshal () method to
marshal the content tree Object returned by the unmarshaller. You can serialize

6-12 Oracle XML Developer's Kit Programmer's Guide

Processing XML with the JAXB Class Generator

the data to a DOM tree, SAX content handler, transformation result, or output
stream. The following statement serializes the XML data, including markup, as an
output stream:

m.marshal (obj, System.out);

By default, the marshaller uses UTF-8 encoding when writing XML data to an
output stream.

7. Print the contents of the XML document. The program implements a process ()
method that accepts the content tree and marshaller as parameters.

The first stage of processing prints the data in the XML document without the
XML markup. The method casts the Object generated by the marshaller into type
MyAddress. It proceeds to invoke a series of methods whose method names are
constructed by prefixing get to the name of an XML element. For example, to
obtain the data in the <city> element in Example 6-1, the program invokes
getCity (). The following code fragment illustrates this technique:

public static void process(Object obj, Marshaller m) throws Throwable
{
generated.MyAddress elem = (generated.MyAddress)obj;
System.out.println();
System.out.println(" My address is: ");

System.out.println(" name: " + elem.getName() + "\n" +
" doorNumber " + elem.getDoorNumber () + "\n" +
" street: " + elem.getStreet() + "\n" +
" city: " + elem.getCity() + "\n" +
" state: " + elem.getState() + "\n" +
" zip: " + elem.getZip() + "\n" +
" country: " + elem.getCountry() + "\n" +
"\n")

8. Change the XML data and print it. The process () method continues by invoking
set methods that are analogous to the preceding get methods. The name of each set
method is constructed by prefixing set to the name of an XML element. For
example, setCountry () changes the value in the <country> element. The
following statements illustrate this technique:

short num = 550;

elem.setDoorNumber (num) ;
elem.setCountry("India");

num = 10100;

elem.setZip(new java.math.BigInteger ("100100"));
elem.setCity("Noida");

elem.setState("Delhi");

After changing the data, the program prints the data by invoking the same get
methods as in the previous step.

Customizing a Class Name in a Top-Level Element

The Samplel0. java program illustrates one form of JAXB customization. The
program shows you can change the name of a class that corresponds to an element in
the input XML schema.

Using the JAXB Class Generator 6-13

Processing XML with the JAXB Class Generator

Defining the Schema

Example 6-4 shows the XML data document that provides the input to the sample
application. The samplel0 .xml document describes a business.

Example 6—-4 sample10.xml

<?xml version="1.0"?>

<business xmlns="http://jaxbcustomized/samplel0/">
<title>Software Development</title>
<owner>Larry Peterson</owner>
<id>45123</id>

</business>

Example 6-5 shows the XML schema that defines the structure of samplel0.xml. The
schema defines one complex type and one element as follows:

s The complex type, which is named businessType, is a sequence of elements.
Each element in the sequence describes a part of the business: title, owner, and id.

s The element, which is named business, is of type biz :businessType. The
biz prefix specifies the http: //jaxbcustomized/samplel0/ namespace. In
samplel0.xml, the business top-level element, which is in namespace
http://jaxbcustomized/samplel0/, conforms to the schema definition.

Example 6-5 sample10.xsd

<?xml version="1.0"?>
<!-- Customization of class name in top level element -->

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://jaxbcustomized/samplel0/"
xmlns:biz="http://jaxbcustomized/samplel0/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="1.0"
elementFormDefault="qualified">

<element name="business" type="biz:businessType">
<annotation>
<appinfo>
<jaxb:class name="myBusiness"/>
</appinfo>
</annotation>
</element>

<complexType name="businessType">
<sequence>
<element name="title" type="string"/>
<element name="owner" type="string"/>
<element name="id" type="integer"/>
</sequence>
</complexType>

</schema>

Customizing the Schema Binding The schema shown in Example 6-5 customizes the
binding of the business element by means of an inline binding declaration. The
general form for inline customizations is the following:

<xs:annotation>

6-14 Oracle XML Developer's Kit Programmer's Guide

Processing XML with the JAXB Class Generator

<xs:appinfo>
binding declarations

</xs:appinfo>
</xs:annotation>

Example 6-5 uses the <class> binding declaration to bind a schema element to a Java
class name. You can use the declaration to customize the name for an interface or the
class that implements an interface. The JAXB class generator supports the following
syntax for <class> customizations:

<class [name = "className"] >

The name attribute specifies the name of the derived Java interface. Example 6-5
contains the following customization:

<jaxb:class name="myBusiness"/>

Thus, the schema binds the business element to the interface myBusiness rather
than to the interface business, which is the default.

Generating and Compiling the Java Classes

After you have an XML document and corresponding XML schema, the next stage is
to generate the Java classes from the XML schema. You can use the JAXB
command-line interface to perform this task.

If your environment is set up as described in "Setting Up the Java XDK Environment"
on page 2-5, then you can create the source files in the generated package as follows:

cd SORACLE_HOME/xdk/demo/java/jaxb/Samplel0
orajaxb -schema samplel0.xsd

Because the preceding command does not specify a target package, the package name
is constructed from the target namespace of the schema, which is
http://jaxbcustomized/samplel0/ . Consequently, the utility generates the
following source files in the . /jaxbcustomized/samplel0/ subdirectory:

BusinessType.java
BusinessTypeImpl.java
MyBusiness.java
MyBusinessImpl.java
ObjectFactory.java

Note that the complex type businessType has two source files,
BusinessType.java and BusinessTypeImpl . java. Because of the JAXB
customization, the business element is bound to interface MyBusiness and
implementing class MyBusinessImpl.

The content of the BusinessType. java source file is shown in Example 6-6.

Example 6-6 BusinessType.java

package jaxbcustomized.samplelO;
public interface BusinessType

{
public void setTitle(java.lang.String t);

Using the JAXB Class Generator 6-15

Processing XML with the JAXB Class Generator

public java.lang.String getTitle();
public void setOwner (java.lang.String o);
public java.lang.String getOwner () ;
public void setId(java.math.BigInteger 1i);
public java.math.BigInteger getId();

}

The BusinessType complex type defined a sequence of elements: title, owner,
and id. Consequently, the Address interface includes a get and set method
signature for each of the elements. For example, the interface includes getTitle ()
for retrieving data in the <title> element and setTitle () for modifying data in
this element.

You can compile the Java source files with javac as follows:

cd SORACLE_HOME/xdk/demo/java/jaxb/Samplel0/jaxbcustomized/samplel0
javac *.java

Processing the XML Data

The Samplel0. java source file shows how you can process the data in the
samplel0.xml document by using the class files that you generated in "Generating
and Compiling the Java Classes" on page 6-15. The sample program unmarshals the
XML document, prints its content, and marshals the XML to standard output.

The Samplel0. java program processes the XML data as follows:

1. Create strings for the XML data document file name and the name of the directory
that contains the generated classes. This name is the package name. For example:

String fileName = "samplelO.xml";
String instancePath = "jaxbcustomized.samplelO";
2. Instantiate a JAXB context by invoking the JAXBContext .newInstance ()

method. The following statement illustrates this technique:

JAXBContext jc = JAXBContext.newInstance (instancePath);

3. Create the unmarshaller. The following statement illustrates this technique:

Unmarshaller u = jc.createUnmarshaller();

4. Unmarshal the XML document. The program unmarshals the document twice: it
first returns an Object and then uses a cast to return a MyBusiness object. The
following statement illustrates this technique:

Object obj = u.unmarshal (fileToURL(fileName)) ;
jaxbcustomized.samplel(0.MyBusiness bus =
(jaxbcustomized.samplel(.MyBusiness) u.unmarshal (fileToURL(fileName)) ;

5. Print the contents of the XML document. The program invokes the get methods
on the MyBusiness object. The following code fragment illustrates this technique:

System.out.println("My business details are: ");
System.out.println(" title: " + bus.getTitle());
System.out.println(" owner: " + bus.getOwner());
System.out.println(" id: " + bus.getId().toString());
System.out.println();

6. Create a marshaller. The following statement illustrates this technique:

Marshaller m = jc.createMarshaller();

6-16 Oracle XML Developer's Kit Programmer's Guide

Processing XML with the JAXB Class Generator

Configure the marshaller. You can invoke setProperty () to configure various
properties the marshaller. The JAXB_FORMATTED_OUTPUT constant specifies that
the marshaller should format the resulting XML data with line breaks and
indentation. The following statements illustrate this technique:

m.setProperty (Marshaller.JAXB_FORMATTED_OUTPUT, new Boolean(true));

Marshal the content tree. The following statement serializes the XML data,
including markup, as an output stream:

m.marshal (bus, System.out);

By default, the marshaller uses UTF-8 encoding when writing XML data to an
output stream.

Using the JAXB Class Generator 6-17

Processing XML with the JAXB Class Generator

6-18 Oracle XML Developer's Kit Programmer's Guide

7

Using the XML Pipeline Processor for Java

This chapter contains these topics:

Introduction to the XML Pipeline Processor
Using the XML Pipeline Processor: Overview
Processing XML in a Pipeline

Introduction to the XML Pipeline Processor

This section contains the following topics:

Prerequisites

Prerequisites
Standards and Specifications
Multistage XML Processing

Customized Pipeline Processes

This chapter assumes that you are familiar with the following topics:

XML Pipeline Definition Language. This XML vocabulary enables you to
describe the processing relations between XML resources. If you require a more
thorough introduction to the Pipeline Definition Language, consult the XML
resources listed in "Related Documents” on page xxxvi of the preface.

Document Object Model (DOM). DOM is an in-memory tree representation of
the structure of an XML document.

Simple API for XML (SAX). SAX is a standard for event-based XML parsing.

XML Schema language. Refer to Chapter 5, "Using the Schema Processor for Java"
for an overview and links to suggested reading.

Standards and Specifications

The Oracle XML Pipeline processor is based on the W3C XML Pipeline Definition
Language Version 1.0 Note. The W3C Note defines an XML vocabulary rather than an
APIL You can find the Pipeline specification at the following URL:

http://www.w3.0org/TR/xml-pipeline/

"Pipeline Definition Language Standard for the XDK for Java" on page 29-5 describes
the differences between the Oracle XDK implementation of the Oracle XML Pipeline
processor and the W3C Note.

Using the XML Pipeline Processor for Java 7-1

Introduction to the XML Pipeline Processor

See Also: Table 29-1, " Summary of XML Standards Supported by
the XDK"

Multistage XML Processing

The Oracle XML Pipeline processor is built on the XML Pipeline Definition Language.
The processor can take an input XML pipeline document and execute pipeline
processes according to derived dependencies. A pipeline document, which is written
in XML, specifies the processes to be executed in a declarative manner. You can
associate Java classes with processes by using the <processdef /> element in the
pipeline document.

Use the Pipeline processor for mutistage processing, which occurs when you process
XML components sequentially or in parallel. The output of one stage of processing can
become the input of another stage of processing. You can write a pipeline document
that defines the inputs and outputs of the processes. Figure 7-1 illustrates a possible
pipeline sequence.

Figure 7-1 Pipeline Processing

XML XML XSD XSL XML Out
p— Parser Processor Processor Compressor jp—
—— — i | —> | — | —_— —

X
gl
11| =

XSL

In addition to the XML Pipeline processor itself, the XDK provides an API for
processes that you can pipe together in a pipeline document. Table 7-2 summarizes the
classes provided in the oracle.xml.pipeline.processes package.

The typical stages of processing XML in a pipeline are as follows:

1. Parse the input XML documents. The oracle.xml .pipeline.processes
package includes DOMParserProcess for DOM parsing and
SAXParserProcess for SAX parsing.

2. Validate the input XML documents.

3. Serialize or transform the input documents. Note that the Pipeline processor does
not enable you to connect the SAX parser to the XSLT processor, which requires a
DOM.

In multistage processing, SAX is ideal for filtering and searching large XML
documents. You should use DOM when you need to change XML content or require
efficient dynamic access to the content.

See Also: "Processing XML in a Pipeline" on page 7-9 to learn how
to write a pipeline document that provides the input for a pipeline
application

Customized Pipeline Processes

The oracle.xml.pipeline.controller.Process class is the base class for all
pipeline process definitions. The classes in the oracle.xml .pipeline.processes

7-2 Oracle XML Developer's Kit Programmer's Guide

Using the XML Pipeline Processor: Overview

package extend this base class. To create a customized pipeline process, you need to
create a class that extends the Process class.

At the minimum, every custom process should override the do-nothing
initialize() and execute () methods of the Process class. If the customized
process accepts SAX events as input, then it should override the
SAXContentHandler () method to return the appropriate ContentHandler that
handles incoming SAX events. It should also override the SAXErrorHandler ()
method to return the appropriate ErrorHandler. Table 7-1 provides further
descriptions of the preceding methods.

Table 7-1 Methods in the oracle.xml.pipeline.controller.Process Class

Class Description

initialize() Initializes the process before execution.

Call getInput () to fetch a specific input object associated with the process element
and call supportType () to indicate the types of input supported. Analogously, call
getOutput () and supportType () for output.

execute () Executes the process.

Call getInParavalue (), getInput (), or getInputSource () to fetch the inputs
to the process. If a custom process outputs SAX events, then it should call the
getSAXContentHandler () and getSAXErrorHandler () methods in

execute () to get the SAX handlers of the following processes in the pipeline.

Call setOutputResult (), getOutputStream(), getOutputWriter () or
setOutParam() to set the outputs or outparams generated by this process.

Call getErrorSource (), getErrorStream (), or getErrorDocument () to
access the pipeline error element associated with this process element. If an exception
occurs during execute (), call error () or info () to propagate it to the
PipelineErrorHandler.

SAXContentHandler () Returnsthe SAX ContentHandler.

If dependencies from other processes are not available at this time, then return null.
When these dependencies are available the method will be executed till the end.

SAXErrorHandler () Returns the SAX ErrorHandler.

If you do not override this method, then the JAXB processor uses the default error
handler implemented by this class to handle SAX errors.

See Also: Oracle Database XML Java API Reference to learn about
the oracle.xml.pipeline.processes package

Using the XML Pipeline Processor: Overview
This section contains the following topics:
= Using the XML Pipeline Processor: Basic Process
» Running the XML Pipeline Processor Demo Programs

= Using the XML Pipeline Processor Command-Line Utility

Using the XML Pipeline Processor: Basic Process
The XML Pipeline processor is accessible through the following packages:

s oracle.xml.pipeline.controller, which provides an XML Pipeline
controller that executes XML processes in a pipeline based on dependencies.

Using the XML Pipeline Processor for Java 7-3

Using the XML Pipeline Processor: Overview

» oracle.xml.pipeline.processes, which provides wrapper classes for XML
processes that can be executed by the XML Pipeline controller. The
oracle.xml.pipeline.processes package contains the classes that you can
use to design a pipeline application framework. Each class extends the
oracle.xml.pipeline.controller.Process class.

Table 7-2 lists the components in the package. You can connect these components
and processes through a combination of the XML Pipeline processor and a
pipeline document.

Table 7-2 Classes in oracle.xml.pipeline.processes

Class Description

CompressReaderProcess Receives compressed XML and outputs parsed XML.

CompressWriterProcess Receives XML parsed with DOM or SAX and outputs compressed XML.

DOMParserProcess Parses incoming XML and outputs a DOM tree.

SAXParserProcess Parses incoming XML and outputs SAX events.

XPathProcess Accepts a DOM as input, uses an XPath pattern to select one or more nodes from an
XML Document or an XML DocumentFragment, and outputs a Document or
DocumentFragment.

XSDSchemaBuilder Parses an XML schema and outputs a schema object for validation. This process is
built into the XML Pipeline processor and builds schema objects used for validating
XML documents.

XSDValProcess Validates against a local schema, analyzes the results, and reports errors if necessary.

XSLProcess Accepts DOM as input, applies an XSL stylesheet, and outputs the result of the
transformation.

XSLStylesheetProcess Receives an XSL stylesheet as a stream or DOM and creates an XSLStylesheet
object.

Figure 7-2 illustrates how to pass a pipeline document to a Java application that uses
the XML Pipeline processor, configure the processor, and execute the pipeline.

7-4 Oracle XML Developer's Kit Programmer's Guide

Using the XML Pipeline Processor: Overview

Figure 7-2 Using the Pipeline Processor for Java

new
PipelineProcessor()

A Available methods:

- executePipeline()

- getExecutionMode()
- setErrorHandler()

- isForceSpecified()

- setExecutionModel()
- setForce()

- setPipelineDoc()

XML Pipeline
document

new
FileReader()

new
PipelineDoc()

P setPipelineDoc()

setExecutionMode()) — —

The basic steps are as follows:

1.

A Available parameters:

- PIPELINE_PARALLEL
- PIPELINE_SEQUENTIAL

A Error handler
must implement
Pipeline Error
Handler interface

Instantiate a pipeline document, which forms the input to the pipeline execution.
Create the object by passing a FileReader to the constructor as follows:

PipelineDoc pipe;
FileReader f;
pipe =

new PipelineDoc ((Reader) £,

false)

’

Instantiate a pipeline processor. PipelineProcessor is the top-level class that
executes the pipeline. Table 7-3 describes some of the available methods.

Using the XML Pipeline Processor for Java 7-5

Using the XML Pipeline Processor: Overview

Table 7-3 PipelineProcessor Methods

Method Description

executePipeline() Executes the pipeline based on the PipelineDoc set by invoking
setPipelineDoc ().

getExecutionMode () Gets the type of execution mode: PIPELINE_SEQUENTIAL or

PIPELINE_PARALLEL.

setErrorHandler () Sets the error handler for the pipeline. This call is mandatory to
execute the pipeline.

setExecutionMode () Sets the execution mode. PIPELINE_PARALLEL is the default and
specifies that the processes in the pipeline should execute in
parallel. PIPELINE_SEQUENTIAL specifies that the processes in
the pipeline should execute sequentially.

setForce () Sets execution behavior. If TRUE, then the pipeline executes
regardless of whether the target is up-to-date with respect to the
pipeline inputs.

setPipelineDoc () Sets the PipelineDoc object for the pipeline.

The following statement instantiates the pipeline processor:

proc = new PipelineProcessor();

3. Set the processor to the pipeline document. For example:

proc.setPipelineDoc (pipe) ;

4. Set the execution mode for the processor and perform any other needed
configuration. For example, set the mode by passing a constant to
PipelineProcessor.setExecutionMode ().

The following statement specifies sequential execution:
proc.setExecutionMode (PipelineConstants.PIPELINE_SEQUENTIAL) ;

5. Instantiate an error handler. The error handler must implement the
PipelineErrorHandler interface. For example:
errHandler = new PipelineSampleErrHdlr (logname) ;

6. Set the error handler for the processor by invoking setErrorHandler (). For
example:

proc.setErrorHandler (errHandler) ;

7. Execute the pipeline. For example:

proc.executePipeline() ;

See Also:

» Oracle Database XML Java API Reference to learn about the
oracle.xml.pipeline subpackages

= "Creating a Pipeline Document" on page 7-9

Running the XML Pipeline Processor Demo Programs

Demo programs for the XML Pipeline processor are included in
$ORACLE_HOME/xdk/demo/java/pipeline. Table 7—4 describes the XML files and
Java source files that you can use to test the utility.

7-6 Oracle XML Developer's Kit Programmer's Guide

Using the XML Pipeline Processor: Overview

Table 7-4 Pipeline Processor Sample Files

File

Description

README

PipelineSample.java

PipelineSampleErrHdlr.java

book .xml

book.xsl

book_err.xsl

id.xsl

items.xsd

pipedoc.xml

pipedoc2.xml

pipedoc3.xml

pipedocerr.xml

po.xml

A text file that describes how to set up the Pipeline
processor demos.

A sample Pipeline processor application. The program
takes pipedoc.xml as its first argument.

A sample program to create an error handler used by
PipelineSample.

A sample XML document that describes a series of
books. This document is specified as an input by
pipedoc.xml, pipedoc2.xml, and
pipedocerr.xml.

An XSLT stylesheet that transforms the list of books in
book.xml into an HTML table.

An XSLT stylesheet specified as an input by the
pipedocerr.xml pipeline document. This stylesheet
contains an intentional error.

An XSLT stylesheet specified as an input by the
pipedoc3.xml pipeline document.

An XML schema document specified as an input by the
pipedoc3.xml pipeline document.

A pipeline document. This document specifies that
process pl should parse book . xm1 with DOM, process
p2 should parse book. xs1 and create a stylesheet object,
and process p3 should apply the stylesheet to the DOM
to generate myresult.html.

A pipeline document. This document specifies that
process p1l should parse book . xml with SAX, process p2
should generate compressed XML compxml from the
SAX events, and process p3 should regenerate the XML
from the compressed stream as myresult2.html.

A pipeline document. This document specifies that a
process p5 should parse po . xml with DOM, process p1l
should select a single node from the DOM tree with an
XPath expression, process p4 should parse items.xsd
and generate a schema object, process p6 should validate
the selected node against the schema, process p3 should
parse id.xs1 and generate a stylesheet object, and
validated node to produce myresult3.html.

A pipeline document. This document specifies that
process pl should parse book . xml with DOM, process
p2 should parse book_err.xsl and generate a
stylesheet object if it encounters no errors and apply an
inline stylesheet if it encounters errors, and process p3
should apply the stylesheet to the DOM to generate
myresulterr.html. Because book_err.xsl contains
an error, the program should write the text contents of
the input XML tomyresulterr.html.

A sample XML document that describes a purchase
order. This document is specified as an input by
pipedoc3.xml.

Documentation for how to compile and run the sample programs is located in the
README. The basic steps are as follows:

Using the XML Pipeline Processor for Java 7-7

Using the XML Pipeline Processor: Overview

1. Change into the SORACLE_HOME/xdk/demo/java/pipeline directory (UNIX)
or $ORACLE_HOME% \xdk\demo\java\pipeline directory (Windows).

2. Make sure that your environment variables are set as described in "Setting Up the
Java XDK Environment" on page 2-5.

3. Runmake (UNIX) or Make.bat (Windows) at the system prompt to generate class
files for PipelineSample.java and PipelineSampleErrHdler.java and
run the demo programs. The programs write output files to the 1og subdirectory.

Alternatively, you can run the demo programs manually by using the following
syntax:

java PipelineSample pipedoc pipelog [seq | para]

The pipedoc option specifies which pipeline document to use. The pipelog
option specifies the name of the pipeline log file, which is optional unless you
specify seq or para, in which case a filename is required. If you do not specify a
log file, then the program generates pipeline. log by default. The seq option
processes threads sequentially; para processes in parallel. If you specify neither
seq or para, then the default is parallel processing.

4. View the files generated from the pipeline, which are all named with the initial
string myresult, and the log files.

Using the XML Pipeline Processor Command-Line Utility

The command-line interface for the XML Pipeline processor is named orapipe. The
Pipeline processor is packaged with Oracle database. By default, the Oracle Universal
Installer installs the utility on disk in $ORACLE_HOME/bin.

Before running the utility for the first time, make sure that your environment variables
are set as described in "Setting Up the Java XDK Environment" on page 2-5. Run
orapipe at the operating system command line with the following syntax:

orapipe options pipedoc

The pipedoc is the pipeline document, which is required. Table 7-5 describes the
available options for the orapipe utility.

Table 7-5 orapipe Command-Line Options

Option Purpose

-help Prints the help message

-log logfile Wrrites errors and messages to the specified log file. The default is
pipeline.log.

-noinfo Does not log informational items. The default is on.

-nowarning Does not log warnings. The default is on.

-validate Validates the input pipedoc with the pipeline schema. Validation is

turned off by default. If outparam feature is used, then validate
fails with the current pipeline schema because this is an additional

feature.
-version Prints the release version.
-sequential Executes the pipeline in sequential mode. The default is parallel.
-force Executes pipeline even if target is up-to-date. By default no force is
specified.

7-8 Oracle XML Developer's Kit Programmer's Guide

Processing XML in a Pipeline

Table 7-5 (Cont.) orapipe Command-Line Options

Option Purpose

-attr name value Sets the value of $name to the specified value. For example, if the
attribute name is source and the value is book . xml, then you can
pass this value to an element in the pipeline document as follows:
<input ... label="S$source">.

Processing XML in a Pipeline
This section contains the following topics:
s Creating a Pipeline Document
= Writing a Pipeline Processor Application

= Writing a Pipeline Error Handler

Creating a Pipeline Document

To use the Oracle XML Pipeline processor, you must create an XML document
according to the rules of the Pipeline Definition Language specified in the W3C Note.

The W3C specification defines the XML processing components and the inputs and
outputs for these processes. The XML Pipeline processor includes support for the
following XDK components:

s XML parser

= XML compressor

= XML Schema validator
= XSLT processor

Example of a Pipeline Document

The XML Pipeline processor executes a sequence of XML processing according to the
rules in the pipeline document and returns a result. Example 7-1 shows
pipedoc.xml, which is a sample pipeline document included in the demo directory.

Example 7-1 pipedoc.xml

<pipeline xmlns="http://www.w3.0rg/2002/02/xml-pipeline"
xml:base="http://example.org/">

<param name="target" select="myresult.html"/>

<processdef name="domparser.p"
definition="oracle.xml.pipeline.processes.DOMParserProcess" />
<processdef name="xslstylesheet.p"
definition="oracle.xml.pipeline.processes.XSLStylesheetProcess"/>
<processdef name="xslprocess.p"
definition="oracle.xml.pipeline.processes.XSLProcess"/>

<process 1d="p2" type="xslstylesheet.p" ignore-errors="false">
<input name="xsl" label="book.xsl"/>
<outparam name="stylesheet" label="xslstyle"/>

</process>

<process id="p3" type="xslprocess.p" ignore-errors="false">
<param name="stylesheet" label="xslstyle"/>

Using the XML Pipeline Processor for Java 7-9

Processing XML in a Pipeline

<input name="document" label="xmldoc"/>
<output name="result" label="myresult.html"/>
</process>

<process id="pl" type="domparser.p" ignore-errors="true">

<input name="xmlsource" label="book.xml "/>
<output name="dom" label="xmldoc"/>
<param name="preserveWhitespace" select="true"></param>
<error name="dom">
<html xmlns="http://www/w3/0org/1999/xhtml">
<head>
<title>DOMParser Failure!</title>
</head>
<body>
<hl>Error parsing document</hl>
</body>
</html>
</error>

</process>

</pipeline>

Processes Specified in the Pipeline Document In Example 7-1, three processes are called
and associated with Java classes in the oracle.xml .pipeline.processes
package. The pipeline document uses the <processdef/> element to make the
following associations:

domparser .p is associated with the DOMParserProcess class
xslstylesheet.p is associated with the XSLStylesheetProcess class

xslprocess.p is associated with the XSLProcess class

Processing Architecture Specified in the Pipeline Document The PipelineSample program
accepts the pipedoc.xml document shown in Example 7-1 as input along with XML
documents book . xml and book . xs1. The basic design of the pipeline is as follows:

1.

Parse the incoming book . xm1 document and generate a DOM tree. This task is
performed by DOMParserProcess.

Parse book.xs1 as a stream and generate an XSLStylesheet object. This task is
performed by XSLStylesheetProcess.

Receive the DOM of book . xml as input, apply the stylesheet object, and write the
result to myresult.html. This task is performed by XSLProcess.

Note the following aspects of the processing architecture used in the pipeline
document:

The target information set, http: //example.org/myresult.html, is inferred
from the default value of the target parameter and the xm1 : base setting.

The process p2 has an input of book . xs1 and an output parameter with the label
xslstyle, so it has to run to produce the input for p3.

The p3 process depends on input parameter xs1style and document xmldoc.

The p3 process has an output parameter with the label
http://example.org/myresult.html, so it has to run to produce the target.

The process p1 depends on input document book . xm1 and outputs xmldoc, so it
has to run to produce the input for p3.

7-10 Oracle XML Developer's Kit Programmer's Guide

Processing XML in a Pipeline

In Example 7-1, more than one order of processing can satisfy all of the dependencies.
Given the rules, the XML Pipeline processor must process p3 last but can process p1
and p2 in either order or process them in parallel.

Writing a Pipeline Processor Application

The PipelineSample. java source file illustrates a basic pipeline application. You
can use the application with any of the pipeline documents in Table 7—4 to parse and
transform an input XML document.

The basic steps of the program are as follows:

1.

Perform the initial setup. The program declares references of type FileReader
(for the input XML file), PipelineDoc (for the input pipeline document), and
PipelineProcessor (for the processor). The first argument is the pipeline
document, which is required. If a second argument is received, then it is stored in
the 1ogname String. The following code fragment illustrates this technique:

public static void main(String[] args)
{

FileReader f;

PipelineDoc pipe;

PipelineProcessor proc;

if (args.length < 1)

System.out.println("First argument needed, other arguments are ".
"optional:");

System.out.println("pipedoc.xml <output_log> <'seq'>");

return;

}
if (args.length > 1)
logname = args([l];

Create a FileReader object by passing the first command-line argument to the
constructor as the filename. For example:

f = new FileReader (args[0]);
Create a PipelineDoc object by passing the reference to the FileReader object.

The following example casts the FileReader to a Reader and specifies no
validation:

pipe = new PipelineDoc ((Reader)f, false);
Instantiate an XML Pipeline processor. The following statement instantiates the
pipeline processor:

proc = new PipelineProcessor();

Set the processor to the pipeline document. For example:
proc.setPipelineDoc (pipe) ;

Set the execution mode for the processor and perform any other configuration. The
following code fragment uses a condition to determine the execution mode. If

three or more arguments are passed to the program, then it sets the mode to
sequential or parallel depending on which argument is passed. For example:

String execMode = null;

Using the XML Pipeline Processor for Java 7-11

Processing XML in a Pipeline

if (args.length > 2)

execMode = args[2];
if (execMode.startsWith("seq"))
proc.setExecutionMode (PipelineConstants.PIPELINE_ SEQUENTIAL) ;
else if (execMode.startsWith("para"))
proc.setExecutionMode (PipelineConstants.PIPELINE_PARALLEL) ;
}

7. Instantiate an error handler. The error handler must implement the
PipelineErrorHandler interface. The program uses the
PipelineSampleErrHdler shown in PipelineSampleErrHdlr. java. The
following code fragment illustrates this technique:

errHandler = new PipelineSampleErrHdlr (logname) ;

8. Set the error handler for the processor by invoking setErrorHandler (). The
following statement illustrates this technique:

proc.setErrorHandler (errHandler) ;

9. Execute the pipeline. The following statement illustrates this technique:

proc.executePipeline() ;

See Also: Oracle Database XML Java API Reference to learn about
the oracle.xml.pipeline subpackages

Writing a Pipeline Error Handler

An application calling the XML Pipeline processor must implement the
PipelineErrorHandler interface to handle errors received from the processor. Set
the error handler in the processor by calling setErrorHandler (). When writing the
error handler, you can choose to throw an exception for different types of errors.

The oracle.xml .pipeline.controller.PipelineErrorHandler interface
declares the methods shown in Table 7-6, all of which return void.

Table 7-6 PipelineErrorHandler Methods

Method Description

error (java.lang.String msg, PipelineException e) Handles PipelineException errors.

fatalError(java.lang.String msg, PipelineException e) Handles fatal PipelineException

errors.
warning (java.lang.String msg, PipelineException e) Handles PipelineException

warnings.
info(java.lang.String msg) Prints optional, additional information

about errors.

The first three methods in Table 7-6 receive a reference to an
oracle.xml.pipeline.controller.PipelineException object. The following
methods of the PipelineException class are especially useful:

s getExceptionType (), which obtains the type of exception thrown
m getProcessId(), which obtains the process ID where the exception occurred

» getMessage (), which returns the message string of this Throwable error

7-12 Oracle XML Developer's Kit Programmer's Guide

Processing XML in a Pipeline

The PipelineSampleErrHdler. java source file implements a basic error handler
for use with the PipelineSample program. The basic steps are as follows:

1. Implement a constructor. The constructor accepts the name of a log file and wraps
itina FileWriter object as follows:

PipelineSampleErrHdlr (String logFile) throws IOException
{

log = new PrintWriter (new FileWriter (logFile));

}

2. Implement the error () method. This implementation prints the process ID,
exception type, and error message. It also increments a variable holding the error
count. For example:

public void error (String msg, PipelineException e) throws Exception

{

log.println("\nError in: " + e.getProcessId());
log.println("Type: " + e.getExceptionType());
log.println("Message: " + e.getMessage());
log.println("Error message: " + msg);
log.flush();

errCount++;

}
3. Implement the fatalError () method. This implementation follows the pattern
of error (). For example:

public void fatalError (String msg, PipelineException e) throws Exception

{

log.println("\nFatalError in: " + e.getProcessId());
log.println("Type: " + e.getExceptionType());
log.println("Message: " + e.getMessage());
log.println("Error message: " + msg);

log.flush();

errCount++;

}

4. Implement the warning () method. This implementation follows the basic pattern
of error () except it increments the warnCount variable rather than the
errCount variable. For example:

public void warning (String msg, PipelineException e) throws Exception

{

log.println("\nWarning in: " + e.getProcessId());
log.println("Message: " + e.getMessage());
log.println("Error message: " + msg);
log.flush();

warnCount++;

}

5. Implement the info () method. Unlike the preceding methods, this method does
not receive a PipelineException reference as input. The following
implementation prints the String received by the method and increments the
value of the warnCount variable:

public void info (String msg)

{
log.println("\nInfo : " + msg);
log.flush();
warnCount++;

}

Using the XML Pipeline Processor for Java 7-13

Processing XML in a Pipeline

6. Implement a method to close the PrintWriter. The following code implements
the method closeLog (), which prints the number of errors and warnings and
calls PrintWriter.close():

public void closeLog ()
{

log.println("\nTotal Errors: " + errCount + "\nTotal Warnings: " +
warnCount) ;

log.flush();

log.close();

}
See Also: Oracle Database XML Java API Reference to learn about

the PipelineErrorHandler interface and the
PipelineException class

7-14 Oracle XML Developer's Kit Programmer's Guide

8

Using XDK JavaBeans

This chapter contains these topics:

» Introduction to XDK JavaBeans

= Using the XDK JavaBeans: Overview

s Processing XML with the XDK JavaBeans

Introduction to XDK JavaBeans

The Oracle XML JavaBeans are a set of XML components that you can use in Java
applications and applets.

This section contains the following topics:
» Prerequisites
» Standards and Specifications

s XDK JavaBeans Features

Prerequisites
This chapter assumes that you are familiar with the following technologies:

= JavaBeans. JavaBeans components, or Beans, are reusable software components
that can be manipulated visually in a builder tool.

= Java Database Connectivity (JDBC). Database connectivity is included with the
XDK JavaBeans. The beans can connect directly to a JDBC-enabled database to
retrieve and store XML and XSL files.

= Document Object Model (DOM). DOM is an in-memory tree representation of
the structure of an XML document.

= Simple API for XML (SAX). SAX is a standard for event-based XML parsing.

= XML Schema language. Refer to Chapter 5, "Using the Schema Processor for Java"
for an overview and links to suggested reading.

Standards and Specifications

The XDK JavaBeans require version 1.2 of higher of the XDK and can be used with any
version of JDK 1.2. All of the XDK beans conform to the Sun JavaBeans specification
and include the required BeanInfo class that extends
java.beans.SimpleBeanInfo.

Using XDK JavaBeans 8-1

Introduction to XDK JavaBeans

The JavaBeans 1.01 specification, which describes JavaBeans as present in JDK 1.1, is
available at the following URL:

http://java.sun.com/products/javabeans/docs/spec.html

The additions for the Java 2 platform to the JavaBeans core specification provide
developers with standard means to create more sophisticated JavaBeans components.
The JavaBeans specifications for Java 2 are available at the following URL:

http://java.sun.com/products/javabeans/glasgow/index.html

See Also: Chapter 29, "XDK Standards" for a summary of the
standards supported by the XDK

XDK JavaBeans Features

The Oracle XDK JavaBeans facilitate the addition of GUIs to XML applications. Bean
encapsulation includes documentation and descriptors that you can access directly
from Java IDEs such as Oracle JDeveloper.

The XDK includes the following beans:
s DOMBuilder

= XSLTransformer

» DBAccess

= XMLDiff

s XMLCompress

s XMLDBAccess

s XSDValidator

DOMBuilder

The oracle.xml.async.DOMBuilder bean constructs a DOM tree from an XML
document. The DOMBuilder JavaBean encapsulates the XML parser for Java
DOMParser class with a bean interface and enhances by supporting asynchronous
parsing. By registering a listener, Java programs can initiate parsing of large or
successive documents and immediately return control to the caller.

One of the main benefits of this bean is increased efficiency when parsing multiple
files, especially if the files are large. DOMBuilder can also provide asynchronous
parsing in a background thread in interactive visual applications. Without
asynchronous parsing, the GUI is useless until the document to be parsed. With
DOMBAuilder, the application calls the parse method and then resumes control. The
application can display a progress bar, allow the user to cancel the parse, and so forth.

See Also: "Using the DOMBuilder JavaBean: Basic Process" on
page 8-5

XSLTransformer

The oracle.xml.async.XSLTransformer bean supports asynchronous
transformation. It accepts an XML document, applies an XSLT stylesheet, and creates
an output file. The XSLTransformer JavaBean enables you to transform an XML
document to almost any text-based format, including XML, HTML, and DDL. This
bean can also be used as the basis of a server-side application or servlet to render an

8-2 Oracle XML Developer's Kit Programmer's Guide

Introduction to XDK JavaBeans

XML document, such as an XML representation of a query result, into HTML for
display in a browser.

The main benefit of the XSLTransformer bean is that it can transform multiple files
in parallel. Like DOMBuilder, you can also use it in visual applications to avoid long
periods of time when the GUI is nonresponsive. By implementing the
XSLTransformerListener interface, the calling application receives notification when
the transformation completes.

See Also: "Using the XSLTransformer JavaBean: Basic Process" on
page 8-7

DBAccess

The oracle.xml.dbaccess.DBAccess bean maintains CLOB tables that contain
multiple XML and text documents. You can use it when you need to store and retrieve
XML documents in the database, but do not need to process them within the database.
Java applications that use the DBAccess bean connect to the database through JDBC.
Note that XML documents stored in CLOB tables that are not of type XMLType do not
have their entities expanded.

The DBAccess bean enables you to do perform the following tasks:
= Create and delete tables of type CLOB.
= Query the contents of CLOB tables.

s Perform INSERT, UPDATE, and DELETE operations on XML documents stored in
CLOB tables.

XMLDBAccess

The oracle.xml.xmldbaccess.XMLDBAccess bean extends the DBAccess bean
to support XML documents stored in XML Type tables. The class provides methods to
list, delete, or retrieve XML Type instances and their tables. For example, the
getXMLXPathTextData () method retrieves the value of an XPath expression from
an XML document.

DBAccess JavaBean maintains XMLType tables that can hold multiple XML and text
documents. Each XML or text document is stored as a row in the table. The table is
created with the following SQL statement:

CREATE TABLE (FILENAME CHAR() UNIQUE,
FILEDATA SYS.XMLType) ;

The FILENAME field holds a unique string used as a key to retrieve, update, or delete
the row. Document text is stored in the FILEDATA field.

The XMLDBAccess bean performs the following tasks:
s Creates and deletes XML Type tables
»s Lists the contents of an XMLType column

s Performs INSERT, UPDATE, and DELETE operations on XML documents stored in
XMLType tables

See Also: "Using the XMLDBAccess JavaBean: Basic Process" on
page 8-8

Using XDK JavaBeans 8-3

Introduction to XDK JavaBeans

XMLDiff

When comparing XML documents, it is usually unhelpful to compare them character
by character. Most XML comparisons are concerned with differences in structure and
significant textual content, not differences in whitespace. The
oracle.xml.differ.XMLDiff bean performs the following useful tasks:

= Constructs and compares the DOM trees for two input XML documents and
indicates whether the documents are different.

= Provides a graphical display of the differences between two XML files. Specifically,
you can see node insert, delete, modify, or move.

= Generates an XSLT stylesheet that can convert one of the input XML documents
into the other document.

The XMLDi f £ bean is especially useful in pipeline applications. For example, an
application could an XML document, compare it with a previous version of the
document, and store the XSLT stylesheet that shows the differences between them.

See Also:
s Chapter 7, "Using the XML Pipeline Processor for Java"
s "Using the XMLDiff JavaBean: Basic Process" on page 8-10

XMLCompress

As explained in "Compressing XML" on page 3-34, the Oracle XML parser includes a
compressor that can serialize XML document objects as binary streams. Although a
useful tool, compression with XML parser has the following disadvantages:

s When XML data is deserialized, it must be reparsed.
s The encapsulation of XML data in tags greatly increase its size.

The oracle.xml.xmlcomp.XMLCompress bean is an encapsulation of the XML
compression functionality. It provides the following advantages when serializing and
deserializing XML:

= It encapsulates the method that serializes the DOM, which results in a stream.

= XML processors can regenerate the DOM from the compressed stream without
reparsing the XML.

The bean supports compression and decompression of input XML parsed by
DOMParser or SAXParser. DOM compression supports inputs of type XMLType,
CLOB, and BLOB.

To use different parsing options, parse the document before input and then pass the
XMLDocument object to the compressor bean. The compression factor is a rough value
based on the file size of the input XML file and the compressed file. The limitation of
the compression factor method is that it can only be used when the compression is
performed with java.io.File objects as parameters.

XSDValidator

The oracle.xml.schemavalidator.XSDValidator bean encapsulates the
XSDValidator class and adds capabilities for validating a DOM tree. One of the most
useful features of this bean concerns validation errors. If the application throws a
validation error, the getStackList () method returns a list of DOM tree paths that
lead to the invalid node. Nodes with errors are returned in a vector of stack trees in
which the top element of the stack represents the root node. You can obtain child

8-4 Oracle XML Developer's Kit Programmer's Guide

Using the XDK JavaBeans: Overview

nodes by pulling them from the stack. To use getStackList () you must use
instantiate the java.util.Vector and java.util.Stack classes.

Using the XDK JavaBeans: Overview

This section contains the following topics:
s Using the XDK JavaBeans: Basic Process

= Running the JavaBean Demo Programs

Using the XDK JavaBeans: Basic Process

This section describes the program flow of Java applications that use the more useful
beans: DOMBuilder, XSLTrans former, XMLDBAccess, and XMLDi f £. The section
contains the following topics:

s Using the DOMBuilder JavaBean: Basic Process

= Using the XSLTransformer JavaBean: Basic Process
s Using the XMLDBAccess JavaBean: Basic Process
= Using the XMLDiff JavaBean: Basic Process

Using the DOMBuilder JavaBean: Basic Process

The DOMBu1ilder class implements an XML 1.0 parser according to the W3C
recommendation. It parses an XML document and builds a DOM tree. The parsing is
done in a separate thread. The DOMBuilderListener interface must be used for
notification when the tree is built.

When developing applications that use this bean, you should import the following
subpackages:

s oracle.xml.async, which provides asynchronous Java beans for DOM
building

s oracle.xml.parser.v2, which provides APIs for SAX, DOM, and XSLT

The oracle.xml.parser.v2 subpackage is described in detail in Chapter 3, "Using

the XML Parser for Java". The most important DOM-related classes and interfaces in
the javax.xml .async package are described in Table 8-1.

Table 8—1 javax.xml.async DOM-Related Classes and Interfaces

Class/Interface

Description

DOMBuilder class

Encapsulates an XML parser to parse an XML document and build a DOM tree. The
parsing is done in a separate thread. The DOMBuilderListener interface must be used
for notification when the tree is built.

DOMBuilderEvent class Instantiates the event object that DOMBuilder uses to notify all registered listeners about

parse events.

DOMBuilderListener interface Must be implemented so that the program can receive notifications about events during

the asynchronous parsing. The class implementing this interface must be added to the
DOMBuilder with the addDOMBuilderListener () method.

DOMBuildeErrorEvent class Defines the error event that is sent when parse exception occurs.
DOMBuilderErrorListener Must be implemented so that the program can receive notifications when errors are found
interface during parsing. The class implementing this interface must be added to the DOMBuilder

with the addDOMBuilderErrorListener () method.

Using XDK JavaBeans 8-5

Using the XDK JavaBeans: Overview

Figure 8-1 depicts the basic process of an application that uses the DOMBuilder
JavaBean.

Figure 8—1 DOMBuilder JavaBean Usage

file,
string buffer,
or URL
xml input

DOMBuilder.
addDOMBuilder
Listener()

DOMBuilder.
parse()

perform other

tasks

see the list of
available
methods

.DOMBuilder
Listener()

.DOMBuilder
Started()

/\
DOMBuilderListener. async call
DOMBuilderOver() ~

DOM
Document

.DOMBuilder
Error()

DOMBuilder.
getDocumenty()

Figure 8-1 shows the following stages of XML processing:

1. Parse the input XML document. The program can receive the XML document as a
file, string buffer, or URL.

2. Add the DoMBuilder listener. The program invokes the method
DOMBuilder.addDOMBuilderListener (DOMBuilderListener).

3. Parse the XML document. The program invokes the DOMBuilder .parse ()
method.

4. Optionally, process the parsed result further.

5. Call the listener when the program receives an asynchronous call. The listener,
which must implement the DOMBuilderListener interface, is called by
invoking the DOMBuilderOver () method.

The available DOMBuilderListener methods are:

s domBuilderError (DOMBuilderEvent), which is called when parse errors
occur.

8-6 Oracle XML Developer's Kit Programmer's Guide

Using the XDK JavaBeans: Overview

s domBuilderOver (DOMBuilderEvent), which is called when parsing
completes.

s domBuilderStarted(DOMBuilderEvent), which is called when parsing
begins.

6. Fetch the DOM. Invoke the DOMBuilder.getDocument () method to fetch the
resulting DOM document and output it.

Using the XSLTransformer JavaBean: Basic Process

The XSLTransformer bean encapsulates the Java XML parser XSLT processing
engine with a bean interface and extends its functionality to permit asynchronous
transformation. By registering a listener, your Java application can transform large and
successive documents by having the control returned immediately to the caller.

When developing applications that use this bean, you should import the following
subpackages:

s oracle.xml.async, which provides asynchronous Java beans for XSL
transformations

s oracle.xml.parser.v2, which provides APIs for XML parsing SAX, DOM,
and XSLT

The oracle.xml.parser.v2 subpackage is described in detail in Chapter 3,
"Using the XML Parser for Java". The most important XSL-related classes and
interfaces in the javax.xml .async package are described in Table 8-2.

Table 8-2 javax.xml.async XSL-Related Classes and Interfaces

Class/Interface Description

XSLTransformer class Applies XSL transformation in a background thread.

XSLTransformerEvent class Represents the event object used by XSLTransformer to notify XSL transformation
events to all of its registered listeners.

XSLTransformerListener Must be implemented so that the program can receive notifications about events during

interface asynchronous transformation. The class implementing this interface must be added to the
XSLTransformer with the addXSLTransformerListener () method.

XSLTransformerErrorEvent Instantiates the error event object that XSLTransformer uses to notify all registered

class listeners about transformation error events.

XSLTransformerErrorListener Mustbe implemented so that the program can receive notifications about error events

interface

during the asynchronous transformation. The class implementing this interface must be
added to the XSLTransformer using addXxSLTransformerListener () method.

Figure 8-2 illustrates XSLTransformer bean usage.

Using XDK JavaBeans 8-7

Using the XDK JavaBeans: Overview

Figure 8-2 XSLTransformer JavaBean Usage

XSL
stylesheet,
XML document
input

P
afgkgﬁ?ﬂ;ﬂﬁ:@r XSLTransformer. perform other
Listener() processXSL() tasks

see the list of
available
methods

XListener.
xsiTransformer
Over()

ﬁ async call

v

XML Document
fragment

XSLTransformer.
getResult()

Figure 8-2 goes through the following stages:

1.
2.

Input an XSLT stylesheet and XML instance document.

Add an XSLT listener. The program invokes the
XSLTransfomer.addXSLTransformerListener ()method.

Apply the stylesheets. The XSLTransfomer.processXSL () method initiates the
XSL transformation in the background.

Optionally, perform further processing with the XSLTransformer bean.

Call the XSLT listener when the program receives an asynchronous call. The
listener, which must implement the XSLTransformerListener interface, is
called by invoking the xs1TranfsformerOver () method.

Fetch the result of the transformation. Invoke the
XSLTransformer.getResult () method to return the XML document fragment
for the resulting document.

Output the XML document fragment.

Using the XMLDBAccess JavaBean: Basic Process

When developing applications that use the XMLDBAccess bean, you should use the
following subpackages:

oracle.xml .xmldbaccess, which includes the XMLDBAccess bean

oracle.xml.parser.v2, which provides APIs for XML parsing SAX, DOM,
and XSLT

The oracle.xml.parser.v2 subpackage is described in detail in Chapter 3,
"Using the XML Parser for Java". Some of the more important methods in the
XMLDBAccess class are described in Table 8-3.

8-8 Oracle XML Developer's Kit Programmer's Guide

Using the XDK JavaBeans: Overview

Table 8-3 XMLDBAccess Methods

Class/Interface Description

createXMLTypeTable () Creates an XMLType table.
insertXMLTypeData () Inserts a text file as a row in an XMLType table.
replaceXMLTypeData () Replaces a text file as a row in an XMLType table.

getXMLTypeTableNames ()

Retrieves all XML tables with names starting with a
specified string.

getXMLTypeData ()

Retrieves text file from an XMLType table.

getXMLTypeXPathTextData ()

Retrieves the text data based on the XPath expression from
an XMLType table.

Figure 8-3 illustrates typical XMLDBAccess bean usage. It shows how the DBAccess
bean maintains and manipulates XML documents stored in XMLTypes.

Figure 8-3 XMLDBAccess JavaBean Usage

Creates

XMLType
tables

From:

Inserts - SQL result_set

< XML data - files
XMLDBAccess gilfgsBs
Database bean

Lists

A

XMLType
tables

Text documents:

> Manipulates \ _ | . Adds
XMLType - Replaces
tables - Deletes

For example, an XMLDBAaccess program could process XML documents in the

following stages:

1. Create an XMLType table. Invoke createXMLTypeTable () by passing it
database connection information and a table name.

2. List the XML Type tables. Invoke getXMLTypeTableNames () by passing it
database connection information and an empty string.

3. Load XML data into the table. Invoke replaceXMLTypeData () by passing it
database connection information, the table name, the XML file name, and a string

containing the XML.

4. Retrieve the XML data into a String. Invoke getXMLTypeData () by passing it

the connection information,

the table name, and the XML file name.

5. Retrieve XML data based on an XPath expression. Invoke

getXMLXPathTextData ()

by passing it the connection information, the table

name, the XML file name, and the XPath expression.

6. Close the connection.

Using XDK JavaBeans 8-9

Using the XDK JavaBeans: Overview

Using the XMLDiff JavaBean: Basic Process

When developing applications that use the XMLDi £ f bean, you typically use the
following subpackages:

s oracle.xml.xmldiff, which includes the XMLDi f £ bean

s oracle.xml.parser.v2, which provides APIs for XML parsing SAX, DOM,
and XSLT

s oracle.xml.async, which provides asynchronous Java beans for DOM
building

The oracle.xml.parser.v2 subpackage is described in detail in Chapter 3,
"Using the XML Parser for Java". Some important methods in the XMLDiff class are
described in Table 8—4.

Table 8—-4 XMLDiff Methods

Classl/Interface Description

diff () Determines the differences between two input XML files or two
XMLDocument objects.
generateXSL() Generates an XSL file that represents the differences between the input

two XML files. The first XML file can be transformed into the second
XML file with the generated stylesheet. If the XML files are the same, then
the XSL generated can transform the first XML file into the second XML
file, where the first and second files are equivalent.

Related methods are generateXSLDoc () and generateXSLFile().

setFiles() Sets the XML files that need to be compared.

getDocumentl () Gets the document root as an XMLDocument object of the first XML tree.
getDocument2 () is the equivalent method for the second tree.

getDiffPanel () Gets the text panel as JTextPane object that visually shows the diffs in
the first XML file. getDiffPane2 () is the equivalent method for the
second file.

Figure 8—4 illustrates typical XMLDiff bean usage. It shows how XMLDiff bean
compares and displays the differences between input XML documents.

8-10 Oracle XML Developer's Kit Programmer's Guide

Using the XDK JavaBeans: Overview

Figure 8—4 XMLDiff JavaBean Usage

new
XMLDiff()

RO

XMLDiff.
setFiles()

Returns false if XMLDiff él Returns XSL
- - !he_same, true generateXSLIjoc() - - stylesheet as an
if different XMLDocument
that shows
differences

Display él Available methods:
the DOMs -
created by - getDocumenti()
XMLDiff - getDocument2()
- getDiffPane1()
- getDiffPane2()

For example, an XMLDi £ £ program could process XML documents in the following
stages:

1. Create an XMLD1i f £ object.

2. Set the files to be compared. Create File objects for the input files and pass
references to the objects to XMLDiff.setFiles ().

3. Compare the documents. The diff () method returns false if the XML files are
the same and true if they are different.

4. Respond depending on the whether the input XML documents are the same or
different. For example, if they are the same, invoke
JOptionPane.showMessageDialog () to print a message.

5. Generate an XSLT stylesheet that shows the differences between the input XML
documents. For example, generateXSLDoc () generates an XSL stylesheet as an
XMLDocument.

6. Display the DOM trees created by XMLDif£.

Running the JavaBean Demo Programs

Demo programs for the XDK JavaBeans are included in the
$ORACLE_HOME/xdk/demo/java/transviewer directory. The demos illustrate the
use of the XDK beans described in "XDK JavaBeans Features" on page 8-2 as well as

Using XDK JavaBeans 8-11

Using the XDK JavaBeans: Overview

some visual beans that are now deprecated. The following list shows all of the beans

used in the demos:

s XSLTransformer
s DOMBuilder

m DBAccess

m XMLDBAccess

s XMLDiff

n XMLCompress

s XSDValidator

m oracle.xml.srcviewer.XMLSourceView (deprecated)

m oracle.xml.treeviewer.XMLTreeView (deprecated)

m oracle.xml.transformer.XMLTransformPanel (deprecated)

» oracle.xml.dbviewer.DBViewer (deprecated)

Although the visual beans are deprecated, they remain useful as educational tools.
Consequently, the deprecated beans are included in
$ORACLE_HOME/1lib/xmldemo. jar. The nondeprecated beans are included in
SORACLE_HOME/lib/xml. jar.

Table 8-5 lists the sample programs provided in the demo directory. The first column
of the table indicates which sample program use deprecated beans.

Table 8-5 JavaBean Sample Java Source Files

Sample File Name Description

samplel XMLTransformPanelSample.java A visual application that uses the XMLTransformPanel, DOMBuilder,

(deprecated) and XSLTransformer beans. This bean applies XSL transformations to
XML documents and shows the result.
See Also: "Running samplel" on page 8-15

sample2 ViewSample.java A sample visual application that uses the XMLSourceView and
XMLTreeView beans. It visualizes XML document files.

(deprecated)
See Also: "Running sample2" on page 8-15

sample3 AsyncTransformSample.java A nonvisual application that uses the XSLTransformer and
DOMBuilder beans. It applies the XSLT stylesheet specified in doc.xs1
on all .xml files in the current directory. It writes the results to files with
the extension . log.
See Also: "Running sample3" on page 8-15

sampled DBViewSample.java A visual application that uses the DBViewer bean to implement a

(deprecated) simple application that handles insurance claims.

See Also: "Running sample4" on page 8-15

DBViewClaims. java

This JFrame subclass is instantiated in the DBViewFrame class, which is
in turn instantiated in the DBViewSample program.

DBViewFrame. java

This JFrame subclass is instantiated in the DBViewSample program.

sample5 XMLDBAccessSample.java

A nonvisual application for the XMLDBAccess bean. This program
demonstrates how to use the XMLDBAccess bean APIs to store and
retrieve XML documents in XMLType tables.

To use XMLType, an Oracle database is necessary along with xdb . jar.
The program accepts values for HOSTNAME, PORT, SID, USERID, and
PASSWORD. The program creates tables in the database and loads data
from file booklist .xml. The program writes output to
xmldbaccess. log.

See Also: "Running sample5" on page 8-16

8-12 Oracle XML Developer's Kit Programmer's Guide

Using the XDK JavaBeans: Overview

Table 8-5 (Cont.) JavaBean Sample Java Source Files

Sample File Name Description

sample6 XMLDiffSample.java A visual application that uses the XMLDi £ f bean to find differences
between two XML files and generate an XSLT stylesheet. You can use

(deprecated)

this stylesheet to transform the first input XML into the second input
XML file.

See Also: "Running sample6" on page 8-17

XMLDiffFrame. java

A class that implements the ActionListener interface. This class is
used by the XMLDi f fSample program.

XMLDiffSrcView. java

A JPanel subclass used by the XMLDi f fSample program.

sample? compviewer.java

(deprecated)

A visual application that uses the XMLCompress bean to compress XML.
The XML input can be an XML file or XML data obtained through a SQL
query. The application enables you to decompress the compressed
stream and view the resulting DOM tree.

See Also: "Running sample7" on page 8-17

compstreamdata.java

A simple class that pipes information from the GUI to the bean. This
class is used in dbpanel . java, filepanel. java, and
xmlcompressutil.java.

dbpanel.java

A JPanel subclass used in xmlcompressutil.java.

filepanel.java

A JPanel subclass used in xmlcompressutil . java.

xmlcompressutil.java

A JPanel subclass used in compviewer. java.

sample8 XMLSchemaTreeViewer.java

(deprecated)

A visual application that uses the Treeviewer, sourceviewer, and
XsDValidator beans. The application accepts an XML instance
document and an XML schema document as inputs. The application
parses both the documents and validates the instance document against
the schema. If the document is invalid, then the nodes where the errors
occurred are highlighted and an error message is shown in a tool tip.

See Also: "Running sample8" on page 8-17

TreeViewerValidate. java

A JPanel subclass that displays a parsed XML instance document as a
tree. This class is used by the XMLSchemaTreeViewer . java program.

sample9 XMLSrcViewer. java

(deprecated)

A visual application that uses the sourceviewer and XSDvValidator
beans. The demo takes an XML file as input. You can select the
validation mode: DTD, XML schema, or no validation. The program
validates the XML data file against the DTD or schema and displays it
with syntax highlighting. It also logs validation errors. For schema
validation it also highlights the error nodes appropriately. External and
internal DTDs can be viewed.

See Also: "Running sample9" on page 8-18

XMLSrcViewPanel . java

A class that shows how to use the XMLSourceView and
DTDSourceView objects. This class is used by the
XMLSrcViewer . java program.

Each XMLSourceView object is set as a Component of a JPanel by
invoking goButton_actionPerformed (). The XML file to be viewed
is parsed and the resulting XML document is set in the XMLSourceView
object by invoking makeSrcPane (). The highlighting and DTD display
properties are specified at this time. For performing schema validation,
build the schema object by invoking makeSchemaVvalPane (). You can
can check for errors and display the source code accordingly with
different highlights. You can retrieve a list of schema validation errors
from the XMLSourceView by invoking dumpErrors ().

samplelO XSDhValidatorSample. java

An application that shows how to use the XSDValidator bean. It
accepts an XML file and an XML schema file as input. The program
displays errors occurring during validation, including line numbers.

See Also: "Running samplel0" on page 8-18

Table 8-6 describes additional files that are used by the demo programs.

Using XDK JavaBeans 8-13

Using the XDK JavaBeans: Overview

Table 8-6 JavaBean Sample Files

File Name

Description

XMLDiffDatal.txt

XMLDiffData2.txt

booklist.xml
claim.sqgl
doc.xml
doc.xsl

emptable.xsl

note_in_dtd.xml

purchaseorder .xml

purchaseorder .xsd

An XML document used by the XMLDiffSample. java program. By default the 2 XML
files xXMLDiffDatal. txt and XMLDiffData2. txt are compared and the output XSLT
is stored as XMLDif fSample.xs1.

An XML document used by the XMLDiffSample. java program. By default the 2 XML
files XMLDiffDatal. txt and XMLDiffData2. txt are compared and the output XSLT
is stored as XMLDi ffSample.xsl.

An XML document for use by XMLDBAccessSample. java.

An XML document used by ViewSample. java and XMLDBAccessSample. java.
An XML document for use by AsyncTransformSample. java.

An XSLT stylesheet for use by AsyncTransformSample. java.

An XSLT stylesheet for use by AsyncTransformSample. java, ViewSample. java,
or XMLTransformPanelSample. java.

A sample XML document for use in XMLSrcViewer . java. You can use this file in DTD
validation mode to view an internal DTD with validation errors. An internal DTD can be
optionally displayed along with the XML data.

An XML document used by the XSDvalidatorSample. java program. The instance
document purchaseorder.xml does not comply with XML schema defined in
purchaseorder . xsd, which causes the program to display the errors.

An XML schema document used by the XSDvalidatorSample. java program. The
instance document purchaseorder.xml does not comply with XML schema defined
in purchaseorder . xsd, which causes the program to display the errors.

Documentation for how to compile and run the sample programs is located in the
README in the same directory. The basic steps are as follows:

1.

Change into the $ORACLE_HOME/xdk/demo/java/transviewer directory
(UNIX) or $ORACLE_HOME%\xdk\demo\java\transviewer directory
(Windows).

Make sure that your environment variables are set as described in "Setting Up the
Java XDK Environment" on page 2-5. The beans require JDK 1.2 or higher. The
DBViewer and DBTransformPanel beans require JDK 1.2.2 when rendering
HTML. Prior versions of the JDK may not render HTML in the result buffer

properly.

Edit the Makefile (UNIX) or Make.bat (Windows) for your environment. In
particular, do the following;:

s Change the JDKPATH in the Makefile to point to your JDK path.

s Change PATHSEP to the appropriate path separator for your operating system.

s Change the HOSTNAME, PORT, SID, USERID, and PASSWORD parameters so
that you can connect to the database through the JDBC thin driver. These
parameters are used in sample4 and sample5.

Run make (UNIX) or Make .bat (Windows) at the system prompt to generate the
class files.

Run gmake as follows to run the demos:

samplel
sample2
sample3
sampled

gmake
gmake
gmake
gmake

8-14 Oracle XML Developer's Kit Programmer's Guide

Using the XDK JavaBeans: Overview

gmake sample5b
gmake sampleb6
gmake sample?
gmake sample8
gmake sample9
gmake samplel0

The following sections explain how to run the demos.

Running samplet

Samplel is the program that uses the XMLTransViewer bean. You can run the
program manually as follows:

java XMLTransformPanelSample

You can use the program to import and export XML files from Oracle database, store
XSL transformation files in the database, and apply stylesheets to XML interactively.
To use the database connectivity feature in this program, you need to know the
network name of the computer where the database runs, the port (usually 1521), and
the name of the Oracle instance (usually orcl). You also need an account with
CREATE TABLE privileges. If you have installed the sample schemas, then you can use
the account hr. You can the XMLTransViewer program to apply stylesheet
transformation to XML files and display the result.

The program displays a panel with tabs on the top and the bottom. The first two top
tabs are used to switch between the XML buffer and the XSLT buffer. The third tab
performs XSL transformation on the XML buffer and displays the result. The first two
tabs on the bottom can be used to load and save data from Oracle database and from
the file system. The remaining bottom tabs switch the display of the current content to
tree view, XML source, edit mode and, in case of the result view after the
transformation, HTML.

Running sample2

Sample? is a GUI-based demo for the XMLSourceView and XMLTreeView beans,
which are deprecated. The ViewSample program displays the booklist.xml file in
separate source and tree views. You can run the program manually as follows:

java ViewSample

Running sample3

Sample3 is a nonvisual demo for the asynchronous DOMBuilder and
XSLTransformer beans. The AsyncTransformSample program applies the
doc .xs1 XSLT stylesheet to all *.xml files in the current directory. The program
writes output to files with the extension . 1og. You can run the program as follows:

java AsyncTransformSample

Running sample4

Sampled is a visual demo for the DBViewer bean, which is deprecated. It runs in the
following stages:

1. It starts SQL*Plus, connects to the database with the USERID and PASSWORD
specified in the Makefile, and runs the claim. sql script. This script creates a
number of tables, views, and types for use by the DBViewSample demo program.

2. It runs the DBViewSample program as follows:

java -classpath "$(MAKE_CLASSPATH)" DBViewSample

Using XDK JavaBeans 8-15

Using the XDK JavaBeans: Overview

JDBC connection information is hard-coded in the DBViewClaims . java source file,
which implements a class used by the demo. Specifically, the program assumes the
values for USERID, PASSWORD, and so forth set in the Makefile. If your
configuration is different, navigate to line 92 in DBViewClaims . java and modify
setUsername (), setPassword (), and so forth with values that reflect your Oracle
database configuration.

Running sample5

Sample5 is a nonvisual demo for the XMLDBAccess bean. It uses the XMLIype
objects to store XML documents inside the database.The following program connects
to the database with the Java thin client, creates XML Type tables, and loads the data
from booklist.xml. To run the program you must specify the following pieces of
information as command-line arguments:

s Host name (for example, myhost)

s Port number (for example, 1521)

» SID of the database (for example, ORCL)

= Database account in which the tables will be created (for example, hr)
» Password for the database account (for example, hr)

For example, you can run the program as follows:

java XMLDBAccessSample myhost 1521 ORCL hr hr

The following text shows sample output from dbaccess. log:

Demo for createXMLTypeTables():
Table +'testxmltype' successfully created.

Demo for listXMLTypeTables():
tablenamename=TESTXMLTYPE

Demo for replaceXMLTypeData() (similar to insert):
XML Data from +'booklist.xml' successfully replaced in table 'testxmltype'.

Demo for getXMLTypeData() :
XMLType data fetched:
<?xml version="1.0"?>
<booklist>
<book isbn="1234-123456-1234">
<title>C Programming Language</title>
<author>Kernighan and Ritchie</author>
<publisher>EEE</publisher>
<price>7.99</price>
</book>

<book isbn="1230-23498-2349879">
<title>Emperor's New Mind</title>
<author>Roger Penrose</author>
<publisher>0Oxford Publishing Company</publisher>
<price>15.99</price>
</book>
</booklist>

Demo for getXMLTypeXPathTextDatal():
Data fetched using XPath exp '/booklist/book[3]':

8-16 Oracle XML Developer's Kit Programmer's Guide

Using the XDK JavaBeans: Overview

<book isbn="2137-598354-65978">
<title>Twelve Red Herrings</title>
<author>Jeffrey Archer</author>
<publisher>Harper Collins</publisher>
<price>12.95</price>

</book>

Running sample6

The sample6 program is a visual demo for the XMLDi £ f bean. The XMLDi f fSample
class invokes a GUI that enables you to choose the input data files from the File menu
by selecting Compare XML Files. The Transform menu enables you to apply the
generated XSLT generated to the first input XML. Select Save As in the File menu to
save the output XML file, which will be the same as the second input file. By default,
the program compares XMLDiffDatal. txt to XMLDiffData2.txt and stores the
XSLT output as XMLDiffSample.xs1.

You can run the program manually as follows:

java -mx50m XMLDiffSample XMLDiffDatal.txt XMLDiffData2.txt

If the input XML files use a DTD that accesses a URL outside a firewall, then modify
XMLDiffSample.java to include the proxy server settings before the setFiles ()
call. For example, modify the program as follows:

/* Set proxy to access dtd through firewall */

Properties p = System.getProperties();

p.put ("proxyHost", "www.proxyservername.com");

p.put ("proxyPort", "80");

p.put ("proxySet", "true");

/* You will also have to import java.util.*; */

Running sample7

The sample7 visual demo illustrates the use of the XMLCompress bean. The
compviewer class invokes a GUI which lets the user compress and uncompress XML
files and data obtained from the database. The loading options enable the user to
retrieve the data either from a file system or a database. This application does not
support loading and saving compressed data from the database. The compression
factor indicates a rough estimate by which the XML data is reduced.

You can run the program manually as follows:

java compviewer

Running sample8

The sample8 demo illustrates the use of the XML TreeViewer bean. The
XMLSchemaTreeViewer program enables the user to view an XMLDocument in a tree
format. The user can input a schema document and validate the instance document
against the schema. If the document is invalid, then the invalid nodes are highlighted
with the error message. Also, the program displays a log of all the line information in a
separate panel, which enables the user to edit the instance document and revaluated.
Test the program with sample files purchaseorder.xml and purchaseorder . xsd.
The instance document purchaseorder . xml does not comply with schema defined
in purchaseorder .xsd.

You can run the program manually as follows:

java XMLSchemaTreeViewer

Using XDK JavaBeans 8-17

Processing XML with the XDK JavaBeans

Running sample9

The sample9 demo illustrates the use of the SourcevViewer bean. The
XMLSrcViewer program enables you to view an XML document or a DTD with
syntax highlighting turned on. You can validate the XML document against an input
XML Schema or DTD. The DTD can be internal or external.

If the validation is successful, then you can view the instance document and XML
schema or DTD in the Source View pane. If errors were encountered during schema
validation, then an error log with line numbers is available in the Error pane. The
Source View pane shows the XML document with error nodes highlighted.

You can use sample files purchaseorder.xml and purchaseorder . xsd for testing
XML schema validation with errors. You can use note_in_dtd.xml with DTD
validation mode to view an internal DTD with validation errors. You can run the
program manually as follows:

java XMLSrcViewer

Running sample10

The samplel0 demo illustrates the use of the XSDvalidator bean. The
XSDhValidatorSample program two arguments as input: an XML document and its
associated XML schema. The program displays errors occurring during validation,
including line numbers.

The following program uses purchaseorder .xsd to validate the contents of
purchaseorder .xml:

java XSDValidatorSample purchaseorder.xml purchaseorder.xsd

The XML document fails (intentionally) to validate against the schema. The program
displays the following errors:

Sample purchaseorder.xml purchaseorder.xsd

<Line 2, Column 41>: XML-24523: (Error) Invalid value 'abc' for attribute:
'orderDate’

#document->purchaseOrder

<Line 7, Column 27>: XML-24525: (Error) Invalid text 'CA' in element: 'state'
#document->purchaseOrder->shipTo->state->#text

<Line 8, Column 25>: XML-24525: (Error) Invalid text 'sd' in element: 'zip'
#document->purchaseOrder->shipTo->zip->#text

<Line 14, Column 27>: XML-24525: (Error) Invalid text 'PA' in element: 'state'
#document->purchaseOrder->billTo->state->#text

<Line 17, Column 22>: XML-24534: (Error) Element 'coment' not expected.
#document->purchaseOrder->coment

<Line 29, Column 31>: XML-24534: (Error) Element 'shipDae' not expected.
#document->purchaseOrder->items->item->shipDae

Processing XML with the XDK JavaBeans

This section contains the following topics:

» Processing XML Asynchronously with the DOMBuilder and XSLTransformer
Beans

s Comparing XML Documents with the XMLDiff Bean

8-18 Oracle XML Developer's Kit Programmer's Guide

Processing XML with the XDK JavaBeans

Processing XML Asynchronously with the DOMBuilder and XSLTransformer Beans

As explained in "DOMBuilder" on page 8-2 and "XSLIransformer" on page 8-2, you
can use XDK beans to perform asynchronous XML processing.

The AsyncTransformSample. java program illustrates how to use both the
DOMBuilder and XSLTransformer beans. The program implements the following
methods:

runDOMBuilders ()
runXSLTransformer ()
saveResult ()
makeXSLDocument ()
createURL()

init ()
exitWithError ()

asyncTransform()

The basic architecture of the program is as follows:

1.

The program declares and initializes the fields used by the class. Note that the
input XSLT stylesheet is hard-coded in the program as doc . xs1. The class defines
the following fields:

String basedir = new String (".");
OutputStream errors = System.err;

Vector xmlfiles = new Vector();

int numXMLDocs = 1;

String xslFile = new String ("doc.xsl");
URL xs1URL;

XMLDocument xsldoc

The main () method invokes the init () method to perform the initial setup. This
method lists the files in the current directory, and if it finds files that end in the
extension .xml, it adds them to a Vector object. The implementation for the
init () method is as follows:

boolean init () throws Exception
{
File directory = new File (basedir);
String[] dirfiles = directory.list();
for (int j = 0; j < dirfiles.length; j++)
{
String dirfile = dirfiles[j];

if (!dirfile.endsWith(".xml"))
continue;

xmlfiles.addElement (dirfile);
}

if (xmlfiles.isEmpty()) {
System.out.println("No files in directory were selected for processing");
return false;

}
numXMLDocs = xmlfiles.size();

return true;

Using XDK JavaBeans 8-19

Processing XML with the XDK JavaBeans

}

3. Themain () method instantiates AsyncTransformSample as follows:

AsyncTransformSample inst = new AsyncTransformSample();

4. Themain () method invokes the asyncTransform () method. The
asyncTransform() method performs the following main tasks:

a. Invokes makeXSLDocument () to parse the input XSLT stylesheet.

b. Calls runDOMBuilders () to initiate parsing of the instance documents, that
is, the documents to be transformed, and then transforms them.

After initiating the XML processing, the program resumes control and waits while
the processing occurs in the background. When the last request completes, the
method exits.

The following code shows the implementation of the asyncTransform ()
method:

void asyncTransform () throws Exception
{
System.err.println (numXMLDocs +
" XML documents will be transformed" +
" using XSLT stylesheet specified in " + xslFile +
" with " + numXMLDocs + " threads");

makeXSLDocument () ;
runDOMBuilders ();

// wait for the last request to complete
while (rm.activeFound())
Thread.sleep(100);
}

The following sections explain the makeXSLDocument () and runDOMBuilders ()
methods.

Parsing the Input XSLT Stylesheet

The makeXSLDocument () method illustrates a simple DOM parse of the input
stylesheet. It does not use asynchronous parsing. The technique is the same described
in "Performing Basic DOM Parsing" on page 3-15.

The method follows these steps:

1. Create a new DOMParser () object. The following code fragment from
DOMSample. java illustrates this technique:

DOMParser parser = new DOMParser();

2. Configure the parser. The following code fragment specifies that whitespace
should be preserved:

parser.setPreserveWhitespace (true);

3. Create a URL object from the input stylesheet. The following code fragment
invokes the createURL () helper method to accomplish this task:

xs1URL = createURL (xslFile);

4. Parse the input XSLT stylesheet. The following statement illustrates this technique:

8-20 Oracle XML Developer's Kit Programmer's Guide

Processing XML with the XDK JavaBeans

parser.parse (xslURL);

Obtain a handle to the root of the in-memory DOM tree. You can use the
XMLDocument object to access every part of the parsed XML document. The
following statement illustrates this technique:

xsldoc = parser.getDocument () ;

Processing the XML Documents Asynchronously

The runDOMBuilders () method illustrates how you can use the DOMBuilder and
XSLTransformer beans to perform asynchronous processing. The parsing and
transforming of the XML occurs in the background.

The method follows these steps:

1.

Create a resource manager to manage the input XML documents. The program
creates a for loop and obtains the The following code fragment illustrates this
technique:

rm = new ResourceManager (numXMLDocs);
for (int 1 = 0; 1 < numXMLDocs; 1++)
{

rm.getResource() ;

}

Instantiate the DOM builder bean for each input XML document. For example:

DOMBuilder builder = new DOMBuilder (i) ;

Create a URL object from the XML file name. For example:

DOMBuilder builder = new DOMBuilder (i) ;
URL xmlURL = createURL(basedir + "/" + (String)xmlfiles.elementAt(i));
if (xmlURL == null)

exitWithError("File " + (String)xmlfiles.elementAt(i) + " not found");

Configure the DOM builder. The following code fragment specifies the
preservation of whitespace and sets the base URL for the document:

builder.setPreserveWhitespace (true);
builder.setBaseURL (createURL(basedir + "/"));

Add the listener for the DOM builder. The program adds the listener by invoking
addDOMBuilderListener ().

The class instantiated to create the listener must implement the
DOMBuilderListener interface. The program provides a do-nothing
implementation for domBuilderStarted() and domBuilderError (), but
must provide a substantive implementation for domBuilderOver (), which is the
method called when the parse of the XML document completes. The method
invokes runXSLTrans former (), which is the method that transforms the XML.
Refer to "Transforming the XML with the XSLTransformer Bean" on page 8-22 for
an explanation of this method.

The following code fragment illustrates how to add the listener:

builder.addDOMBuilderListener
(

new DOMBuilderListener ()

{
public void domBuilderStarted(DOMBuilderEvent p0) {}

Using XDK JavaBeans 8-21

Processing XML with the XDK JavaBeans

public void domBuilderError (DOMBuilderEvent p0) {}
public synchronized void domBuilderOver (DOMBuilderEvent p0)

{
DOMBuilder bld = (DOMBuilder)p0.getSource();
runXSLTransformer (bld.getDocument (), bld.getId());

)i

6. Add the error listener for the DOM builder. The program adds the listener by
invoking addDOMBuilderErrorListener ().

The class instantiated to create the listener must implement the
DOMBuilderErrorListener interface. The following code fragment show the
implementation:

builder.addDOMBuilderErrorListener
(

new DOMBuilderErrorListener ()

{
public void domBuilderErrorCalled(DOMBuilderErrorEvent p0)

{

int id = ((DOMBuilder)pO.getSource()).getId();
exitWithError ("Error occurred while parsing " +
xmlfiles.elementAt (id) + ": " +

p0.getException () .getMessage()) ;

)i

7. Parse the document. The following statement illustrates this technique:

builder.parse (xmlURL);
System.err.println("Parsing file " + xmlfiles.elementAt(i));

Transforming the XML with the XSLTransformer Bean When the DOM parse completes, the
DOM listener receives notification. The domBuilderOver () method implements the
behavior in response to this event. The program passes the DOM to the
runXSLTransformer () method, which initiates the XSL transformation.

The method follows these steps:

1. Instantiate the XSLTransformer bean. This object performs the XSLT processing.
The following statement illustrates this technique:

XSLTransformer processor = new XSLTransformer (id);

2. Create a new stylesheet object. For example:

XSLStylesheet xsl = new XSLStylesheet (xsldoc, xslURL);

3. Configure the XSLT processor. For example, the following statement sets the
processor to show warnings and configures the error output stream:

processor.showWarnings (true);
processor.setErrorStream (errors);

4. Add the listener for the XSLT processor. The program adds the listener by
invoking addXSLTransformerListener ().

8-22 Oracle XML Developer's Kit Programmer's Guide

Processing XML with the XDK JavaBeans

The class instantiated to create the listener must implement the
XSLTransformerListener interface. The program provides a do-nothing
implementation for xs1TransformerStarted() and

xslTransformerError (), but must provide a substantive implementation for
xslTransformerOver (), which is the method called when the parse of the
XML document completes. The method invokes saveResult (), which prints the
transformation result to a file.

The following code fragment illustrates how to add the listener:

processor.addXSLTransformerListener

(

new XSLTransformerListener ()

{

public void xslTransformerStarted (XSLTransformerEvent p0) {}
public void xslTransformerError (XSLTransformerEvent p0) {}
public void xslTransformerOver (XSLTransformerEvent p0)

{
XSLTransformer trans = (XSLTransformer)pO.getSource();
saveResult (trans.getResult(), trans.getId());

)i

5. Add the error listener for the XSLT processor. The program adds the listener by
invoking addXSLTransformerErrorListener ().

The class instantiated to create the listener must implement the
XSLTransformerErrorListener interface. The following code fragment show
the implementation:

processor.addXSLTransformerErrorListener

(

new XSLTransformerErrorListener ()

{
public void xslTransformerErrorCalled(XSLTransformerErrorEvent p0)

{

int i = ((XSLTransformer)p0.getSource()).getId();
exitWithError ("Error occurred while processing " +
xmlfiles.elementAt (i) + ": " +

p0.getException () .getMessage());

)i

6. Transform the XML document with the XSLT stylesheet. The following statement
illustrates this technique:

processor.processXSL (xsl, xml);

Comparing XML Documents with the XMLDiff Bean

As explained in "XMLDiff" on page 8-4, you can use XDK beans to compare the
structure and significant content of XML documents.

The XMLDiffSample. java program illustrates how to use the XMLDif f bean. The
program implements the following methods:

m showDiffs()

m doXSLTransform()

Using XDK JavaBeans 8-23

Processing XML with the XDK JavaBeans

s createURL()
The basic architecture of the program is as follows:

1. The program declares and initializes the fields used by the class. Note that one
field is of type XMLD1i f fFrame, which is the class implemented in the
XMLDiffFrame.java demo. The class defines the following fields:

protected XMLDocument docl; /* DOM tree for first file */

protected XMLDocument doc2; /* DOM tree for second file */

protected static XMLDiffFrame diffFrame; /* GUI frame */

protected static XMLDiffSample dfxApp; /* XMLDiff sample application */

protected static XMLDiff xmlDiff; /* XML diff object */
protected static XMLDocument xslDoc; /* parsed xsl file */
protected static String outFile = new String("XMLDiffSample.xsl"); /* output

xsl file name */

2. Themain () method creates an XMLDi f £ Sample object as follows:
dfxApp = new XMLDiffSample();

3. Themain() method adds and initializes a JFrame to display the output of the
comparison. The following code illustrates this technique:
diffFrame = new XMLDiffFrame (dfxApp) ;
diffFrame.addTransformMenu () ;

4, Themain () method instantiates the XMLD1 £ £ bean. The following code illustrates
this technique:
xmlDiff = new XMLDiff();

5. Themain () method invokes the showDiffs () method. This method performs
the following tasks:
a. Invokes XMLDiff.diff () to compare the input XML documents.

b. Generates and displays an XSLT stylsheet that can transform one input
document into the other document.

The following code fragment shows the showDiffs () method call:

if (args.length == 3)

outFile = args([2];
if (args.length >= 2)

dfxApp.showDiffs (new File(args[0]), new File(args[1]));
diffFrame.setVisible(true);

The following section explains the showDiffs () method.

Comparing the XML Files and Generating a Stylesheet
The showDiffs () method illustrates the use of the XMLDi f £ bean.

The method follows these steps:

1. Set the files for the XMLDi f f processor. The following statement illustrates this
technique:

xmlDiff.setFiles(filel, file2);

2. Compare the files. The diff () method returns a boolean value that indicates
whether the input documents have identical structure and content. If they are

8-24 Oracle XML Developer's Kit Programmer's Guide

Processing XML with the XDK JavaBeans

equivalent, then the method prints a message to the JFrame implemented by the
XMLDiffFrame class. The following code fragment illustrates this technique:

if (!xmlDiff.diff()

JOptionPane.showMessageDialog

(
diffFrame,
"Files are equivalent in XML representation",
"XMLDiffSample Message",
JOptionPane.PLAIN_MESSAGE

)

}

Generate a DOM for the XSLT stylesheet that shows the differences between the
two documents. The following code fragment illustrates this technique:

xslDoc = xmlDiff.generateXSLDoc () ;

Display the documents in the JFrame implemented by XMLDi f fFrame. Note that

XMLD1i f fFrame instantiates the XMLSourceView bean, which is deprecated. The
method follows these steps:

a. Create the source pane for the input documents. Pass the DOM handles of the
two documents to the dif£Frame object to make the source pane:

diffFrame.makeSrcPane (xmlDiff.getDocumentl (), xmlDiff.getDocument2());
b. Create the pane that shows the differences between the documents. Pass
references to the text panes to dif fFrame as follows:

diffFrame.makeDiffSrcPane (new XMLDiffSrcView (xmlDiff.getDiffPanel()),
new XMLDiffSrcView (xmlDiff.getDiffPane2()));

c. Create the pane for the XSLT stylesheet. Pass the DOM of the stylesheet as
follows:

diffFrame.makeXslPane (xslDoc, "Diff XSL Script");
diffFrame.makeXslTabbedPane() ;

Using XDK JavaBeans 8-25

Processing XML with the XDK JavaBeans

8-26 Oracle XML Developer's Kit Programmer's Guide

9

Using the XML SQL Utility (XSU)

This chapter contains these topics:

Introduction to the XML SQL Utility (XSU)
Using the XML SQL Utility: Overview
Programming with the XSU Java API
Programming with the XSU PL/SQL API

Tips and Techniques for Programming with XSU

Introduction to the XML SQL Utility (XSU)

XML SQL Utility (XSU) is an XDK component that enables you to transfer XML data
through Oracle SQL statements. You can use XSU to perform the following tasks:

Transform data in object-relational database tables or views into XML. XSU can
query the database and return the result set as an XML document.

Extract data from an XML document and use canonical mapping to insert the data
into a table or a view or update or delete values of the appropriate columns or
attributes.

This section contains the following topics:

Prerequisites

Prerequisites
XSU Features
XSU Restrictions

This chapter assumes that you are familiar with the following technologies:

XSU Features

Oracle Database SQL. XSU transfers XML to and from a database through SELECT
statements and DML.

PL/SQL. The XDK supplies a PL/SQL API for XSU that mirrors the Java API.

Java Database Connectivity (JDBC). Java applications that use XSU to transfer
XML to and from a database require a JDBC connection.

XSU has the following key features:

Dynamically generates DTDs or XML schemas.

Using the XML SQL Utility (XSU) 9-1

Using the XML SQL Utility: Overview

XSU Restrictions

Generates XML documents in their string or DOM representations.

Performs simple transformations during generation such as modifying default tag
names for each <ROW> element. You can also register an XSL transformation that
XSU applies to the generated XML documents as needed.

Generates XML as a stream of SAX2 callbacks.

Supports XML attributes during generation, which enables you to specify that a
particular column or group of columns maps to an XML attribute instead of an
XML element.

Allows SQL to XML tag escaping. Sometimes column names are not valid XML
tag names. To avoid this problem you can either alias all the column names or turn
on tag escaping.

Supports XMLType columns in objects or tables.

Inserts XML into relational database tables or views. When given an XML
document, XSU can also update or delete records from a database object.

Note the following restrictions when using XSU:

XSU can only store data in a single table. You can store XML across tables,
however, by using the Oracle XSLT processor to transform a document into
multiple documents and inserting them separately. You can also define views over
multiple tables and perform insertions into the views. If a view is non-updatable
(because of complex joins), then you can use INSTEAD OF triggers over the views
to perform the inserts.

You cannot use XSU to load XML data stored in attributes into a database schema,
but you can use an XSLT transformation to change the attributes into elements.

By default XSU is case sensitive. You can either use the correct case or specify that
case should be ignored.

XSU cannot generate a relational database schema from an input DTD.

Inserting into XMLType tables using XSU is not supported. XMLType columns are
supported.

Using the XML SQL Utility: Overview

This chapter contains the following topics:

Using XSU: Basic Process

Installing XSU

Running the XSU Demo Programs
Using the XSU Command-Line Utility

Using XSU: Basic Process

XSU is accessible through the following interfaces:

The OracleXMLQuery and OracleXMLSave Java classes in the
oracle.xml.sql.query package. Use the OracleXMLQuery class to generate
XML from relational data and OracleXxMLSave class to perform DML.

9-2 Oracle XML Developer's Kit Programmer's Guide

Using the XML SQL Utility: Overview

s The PL/SQL packages DBMS_XMLQuery and DBMS_XMLSave, which mirror the
Java classes.

You can write the following types of XSU applications:

= Java programs that run inside the database and access the internal XSU Java API
= Java programs that run on the client and access the client-side XSU Java API

s PL/SQL programs that access XSU through PL/SQL packages

Generating XML with the XSU Java API: Basic Process

The OraclexMLQuery class makes up the XML generation part of the XSU Java APIL

Figure 9-1 illustrates the basic process for generating XML with XSU.

Figure 9—1 Generating XML with XSU

SQL DOM
Query getXMLDOM object
— Create JDBC > OracleXMLQuery > Further
Connection JDBC Result ¥ instance processing
SQL Setesu getXMLString XML
Query String

The basic steps in Figure 9-1 are as follows:

1. Create a JDBC connection to the database. Normally, you establish a connection
with the DriverManager class, which manages a set of JDBC drivers. After the
JDBC drivers are loaded, call getConnection (). When it finds the right driver,
this method returns a Connection object that represents a database session. All
SQL statements are executed within the context of this session.

You have the following options:

s Create the connection with the JDBC OCI driver. The following code fragment
illustrates this technique:

// import the Oracle driver class
import oracle.jdbc.*;
// load the Oracle JDBC driver
DriverManager.registerDriver (new oracle.jdbc.OracleDriver());
// create the connection
Connection conn =

DriverManager.getConnection ("jdbc:oracle:oci:@", "hr", "hr");

The preceding example uses the default connection for the JDBC OCI driver.

m Create the connection with the JDBC thin driver. The thin driver is written in
pure Java and can be called from any Java program. The following code
fragment illustrates this technique:

Connection conn =
DriverManager.getConnection ("jdbc:oracle:thin:@dlsun489:1521:0RCL",
I|hrl| , llhrll) ;

The thin driver requires the host name (d1sun489), port number (1521), and
the Oracle SID (ORCL). The database must have an active TCP/IP listener.

Using the XML SQL Utility (XSU) 9-3

Using the XML SQL Utility: Overview

= Use default connection used by the server-side internal JDBC driver. This
driver runs within a default session and default transaction context. You are
already connected to the database; your SQL operations are part of the default
transaction. Thus, you do not need to register the driver. Create the
Connection object as follows:

Connection conn = new oracle.jdbc.OracleDriver ().defaultConnection ();

Note: OracleXxMLDataSetExtJdbc is used only for Oracle
JDBC, whereas OraclexMLDataSetGenJdbc is used for
non-Oracle JDBC. These classes are in the oracle.xml.sql.dataset
package.

2. Create an XML query object and assign it a SQL query. You create an
OracleXMLQuery Class instance by passing a SQL query to the constructor, as
shown in the following example:

OracleXMLQuery gry = new OracleXMLQuery (conn, "SELECT * from EMPLOYEES");

3. Configure the XML query object by invoking OracleXMLQuery methods. The
following example specifies that only 20 rows should be included in the result set:
xmlQry.setMaxRows (20) ;

4. Return a DOM object or string by invoking OracleXMLQuery methods. For
example, obtain a DOM object as follows:

XMLDocument domDoc = (XMLDocument)qry.getXMLDOM () ;

Obtain a string object as follows:

String xmlString = qgry.getXMLString();
5. Perform additional processing on the string or DOM as needed.

See Also:

» Oracle Database Java Developer’s Guide to learn about Oracle
JDBC

s Oracle Database XML Java API Reference to learn about
OracleXMLQuery methods

Performing DML with the XSU Java API: Basic Process

Use the OraclexMLSave class to insert, update, and delete XML in the database.
Figure 9-2 illustrates the basic process.

9-4 Oracle XML Developer's Kit Programmer's Guide

Using the XML SQL Utility: Overview

Figure 9-2 Storing XML in the Database Using XSU

User / Browser /
Client /
Application

Storing XML in the Database Using the XML SQL Utility

REGISTER
the table

set

the options

insert
XML into
table

The basic steps in Figure 9-2 are as follows:

1.

Create a JDBC connection to the database. This step is identical to the first step
described in "Generating XML with the XSU Java API: Basic Process" on page 9-3.

Create an XML save object and assign it a table on which to perform DML. Pass a
table or view name to the constructor, as shown in the following example:

OraclexXMLSave sav = new OracleXMLSave(conn, "employees");
Specify the primary key columns. For example, the following code specifies that
employee_id is the key column:

String [] keyColNames = new String[l];
keyColNames[0] = "EMPLOYEE_ID";
sav.setKeyColumnList (keyColNames) ;

Configure the XML save object by invoking OracleXMLSave methods. The
following example specifies an update of the salary and job_id columns:

String[] updateColNames = new String[2];

updateColNames[0] = "SALARY";

updateColNames[1] = "JOB_ID";

sav.setUpdateColumnList (updateColNames); // set the columns to update

Invoke the insertXML (), updateXML (), or deleteXML () methods on the
OracleXMLSave object. The following example illustrates an update:

// Assume that the user passes in this XML document as the first argument
sav.updateXML (sav.getURL (argv[0])) ;

When performing the DML, XSU performs the following tasks:
a. Parses the input XML document.

b. Matches element names to column names in the target table or view.

Using the XML SQL Utility (XSU) 9-5

Using the XML SQL Utility: Overview

c. Converts the elements to SQL types and binds them to the appropriate
statement.

6. Close the OracleXMLSave object and deallocate all contexts associated with it, as
shown in the following example:

sav.close();

See Also:
» Oracle Database Java Developer’s Guide to learn about JDBC

» Oracle Database XML Java API Reference to learn about
OracleXMLSave

Generating XML with the XSU PL/SQL API: Basic Process

The XSU PL/SQL API reflects the Java APl in the generation and storage of XML
documents from and to a database. DBMS_XMLQuery is the PL/SQL package that
reflects the methods in the OracleXMLQuery Java class. This package has a context
handle associated with it. Create a context by calling one of the constructor-like
functions to get the handle and then use the handle in all subsequent calls.

Note: For improved performance, consider using the C-based
DBMS_ XMLGEN, which is written in C and built into the database,
rather than DBMS_ XMLQUERY.

XSU supports the XMLType datatype. Using XSU with XMLType is useful if, for
example, you have XMLType columns in objects or tables.

Generating XML results in a CLOB that contains the XML document. To use
DBMS_XMLQuery and the XSU generation engine, follow these basic steps:

1. Declare a variable for the XML query context and a variable for the generated
XML. For example:

v_queryCtx DBMS_XMLQuery.ctxType;
v_result CLOB;

2. Obtain a context handle by calling the DBMS_XMLQuery .newContext function
and supplying it the query, either as a CLOB or a VARCHAR2. The following
example registers a query to select the rows from the employees table with the
WHERE clause containing the bind variables : EMPLOYEE_ID and : FIRST_NAME:

v_queryCtx = DBMS_XMLQuery.newContext ('SELECT * FROM employees
WHERE employee_id=:EMPLOYEE_ID AND first_name=:FIRST_NAME');

3. Bind values to the query. The binds work by binding a name to the position.
clearBindvValues clears all the bind variables, whereas setBindvValue sets a
single bind variable with a string value. For example, bind the employee_id and
first_name values as shown:

DBMS_XMLQuery.setBindValue (v_queryCtx, 'EMPLOYEE_ID',20);
DBMS_XMLQuery.setBindValue (v_queryCtx, 'FIRST_NAME', 'John');

4. Configure the query context. Set optional arguments such as the ROW tag name, the
ROWSET tag name, or the number of rows to fetch, and so on. The following
example specifies changes the default ROWSET element name to EMPSET:

DBMS_XMLQuery.setRowSetTag (v_queryCtx, 'EMPSET') ;

9-6 Oracle XML Developer's Kit Programmer's Guide

Using the XML SQL Utility: Overview

Fetch the results. You can obtain the XML as a CLOB with the getXML function,
which generates XML with or without a DTD or XML schema. The following
example applies bind values to the statement and gets the result corresponding to
the predicate employee_id = 20 and first_name = 'John':

v_result := DBMS_XMLQuery.getXML (v_queryCtx) ;

Process the results of the XML generation. For example, suppose that your
program declared the following variables:

v_xmlstr VARCHAR2 (32767);

v_line VARCHAR2(2000);

You can print the CLOB stored in v_result as follows:

v_xmlstr := DBMS_LOB.SUBSTR (v_result,32767);
LOOP
EXIT WHEN v_xmlstr IS NULL;
v_line := substr(v_xmlstr,1,INSTR(v_xmlstr,CHR(10))-1);

DBMS_OUTPUT.PUT_LINE('| ' || v_line);
v_xmlstr := SUBSTR(v_xmlstr, INSTR(v_xmlstr,CHR(10))+1);
END LOOP;

Close the context. For example:

DBMS_XMLQuery.closeContext (v_queryCtx) ;

Performing DML with the PL/SQL API: Basic Process

DBMS_XMLSave is the PL/SQL package that reflects the methods in the
OracleXMLSave Java class. This package has a context handle associated with it.
Create a context by calling one of the constructor-like functions to get the handle and
then use the handle in all subsequent calls.

To use DBMS_XMLSave, follow these basic steps:

1.

Declare a variable for the XML save context and a variable for the number of rows
touched by the DML. For example:

v_savCtx DBMS_XMLSave.ctxType;
V_YOows NUMBER;

Create a context handle by calling the DBMS_XMLSave .newContext function and
supply it the table name to use for the DML operations.

v_savCtx := DBMS_XMLSave.newContext ('hr.employees');

Set options based on the type of DML that you want to perform.

For inserts you can set the list of columns to insert into the setUpdateColumn
function. The default is to insert values into all columns. The following example
sets five columns in the employees table:

DBMS_XMLSave. setUpdateColumn (savCtx, 'EMPLOYEE_ID') ;
DBMS_XMLSave.setUpdateColumn (savCtx, 'LAST_NAME') ;
DBMS_XMLSave. setUpdateColumn (savCtx, 'EMAIL') ;
DBMS_XMLSave. setUpdatecolumn (savCtx, 'JOB_ID') ;
DBMS_XMLSave. setUpdateColumn (savCtx, '"HIRE_DATE') ;

For updates you must supply the list of key columns. Optionally, you can then

supply the list of columns for update. In this case, the tags in the XML document
matching the key column names will be used in the WHERE clause of the UPDATE

Using the XML SQL Utility (XSU) 9-7

Using the XML SQL Utility: Overview

statement and the tags matching the update column list will be used in the SET
clause of the UPDATE statement. For example:

DBMS_XMLSave.setKeyColumn (savCtx, 'employee_id'); -- set key column
-- set list of columns to update.

DBMS_XMLSave. setUpdateColumn (savCtx, 'salary');
DBMS_XMLSave.setUpdateColumn (savCtx, 'job_id') ;

For deletes the default is to create a WHERE clause to match all the tag values
present in each <ROW> element of the document supplied. To override this
behavior, set the list of key columns. In this case only those tag values whose tag
names match these columns are used to identify the rows to delete (in effect used
in the WHERE clause of the DELETE statement). For example:

DBMS_XMLSave. setKeyColumn (savCtx, 'EMPLOYEE_ID') ;
4. Supply a context and XML document to the insertXML, updateXML, or
deleteXML functions. For example:

v_rows := DBMS_XMLSave.deleteXML (savCtx,xmlDoc) ;

5. Repeat the DML any number of times if needed.
6. Close the context. For example:
DBMS_XMLSave.closeContext (savCtx) ;

For a model use the Java examples described in "Programming with the XSU Java API"
on page 9-17.

Installing XSU

XSU is included in the Oracle Database software CD along with the other XDK
utilities. "Java XDK Component Dependencies" on page 2-2 describes the XSU
components and dependencies.

By default, the Oracle Universal Installer installs XSU on disk and loads it into the
database. No user intervention is required. If you did not load XSU in the database
when installing Oracle, you can install XSU manually as follows:

1. Make sure that Oracle XML DB is installed.

2. Load the xsul2. jar file into the database. This JAR file, which has a dependency
on xdb. jar for XMLType access, is described in Table 2-1 on page 2-3.

3. Runthe $SORACLE_HOME/rdbms/admin/dbmsxsu. sql script. This SQL script
builds the XSU PL/SQL APL

As explained in "Using XSU: Basic Process" on page 9-2, you do not have to load XSU
into the database in order to use it. XSU can reside in any tier that supports Java.

The following sections describe your installation options:
= Installing XSU in the Database

= Installing XSU in an Application Server

s Installing XSU in a Web Server

Installing XSU in the Database

Figure 9-3 shows the typical architecture for applications that use the XSU libraries
installed in the database. XML generated from XSU running in the database can be
placed in advanced queues in the database to be queued to other systems or clients.

9-8 Oracle XML Developer's Kit Programmer's Guide

Using the XML SQL Utility: Overview

You deliver the XML internally through stored procedures in the database or
externally through web or application servers.

In Figure 9-3 all lines are bidirectional. Because XSU can generate as well as save data,
resources can deliver XML to XSU running inside the database, which can then insert
it in the appropriate database tables.

Figure 9-3 Running XSU in the Database

Middle Tier
Application Web
Server Server
Advanced
Queuing [|
(AQ) <P Application * 4 .
Logic XML — "
SQL \l-
Tables XML SQL Utility o
and «¢ P (Java / PL/SQL) User
Views
XML*
Other Database, * XML, HTML,
Messaging Systems, . . . XHTML, VML, . ..

Installing XSU in an Application Server

Your application architecture may need to use an application server in the middle tier.
The application tier can be an Oracle database, Oracle application server, or a
third-party application server that supports Java programs.

You can generate XML in the middle tier from SQL queries or ResultSets for
various reasons, for example, to integrate different JDBC data sources in the middle
tier. In this case, you can install the XSU in your middle tier, thereby enabling your
Java programs to make use of XSU through its Java APL

Figure 9-4 shows a typical architecture for running XSU in a middle tier. In the middle
tier, data from JDBC sources is converted by XSU into XML and then sent to Web
servers or other systems. Again, the process is bidirectional, which means that the data
can be put back into the JDBC sources (database tables or views) by means of XSU. If
an Oracle database itself is used as the application server, then you can use the
PL/SQL front-end instead of Java.

Using the XML SQL Utility (XSU) 9-9

Using the XML SQL Utility: Overview

Figure 9-4 Running XSU in the Middle Tier

Middle Tier

Application Server

or

Oracle Database (Java Web
or PL/SQL front end) Server

Any

Database SQL data = — -
(via JDBC) {7 APplication xwu_*>
|

XML SQL Utility
(Java)

—

XML*

Other Database, * XML, HTML,
Messaging Systems, . . . XHTML, VML, . ..

Installing XSU in a Web Server

Figure 9-5 shows that XSU can live in the Web server as long as the Web server
supports Java servlets. In this way you can write Java servlets that use XSU. XSQL
Servlet is a standard servlet provided by Oracle. It is built on top of XSU and provides
a template-like interface to XSU functionality. To perform XML processing in the Web
server and avoid intricate servlet programming, you can use the XSQL Servlet.

Figure 9-5 Running XSU in a Web Server

Web Server
(running Servlets)
Any —
Database SQL data [Serviets . Y .
(via JDBC) XML —
> (XS|QL servlets) > ¢ N ‘ QU—_
XML SQL Utility ~—
(Java) User

* XML, HTML,
XHTML, VML, . . .

9-10 Oracle XML Developer's Kit Programmer's Guide

Using the XML SQL Utility: Overview

See Also:

Oracle XML DB Developer’s Guide, especially the chapter on
generating XML, for examples on using XSU with XMLType

Oracle Database XML Java API Reference to learn about the
classes OracleXMLQuery and OracleXMLSave

Oracle Database PL/SQL Packages and Types Reference to learn
about the packages DBMS_XMLQuery and DBMS_XMLSave

Chapter 11, "Using the XSQL Pages Publishing Framework" to
learn about XSQL Servlet

Running the XSU Demo Programs

Demo programs for XSU are included in SORACLE_HOME/xdk/demo/java/xsu.
Table 9-1 describes the XML files and programs that you can use to test XSU.

Table 9-1

XSU Sample Files

File

Description

bindSQLVariables.sgl

An PL/SQL script that binds values for EMPLOYEE_ID and FIRST_NAME to columns in the
employees table. Refer to "Binding Values in XSU" on page 9-31.

changeElementName.sqgl

A PL/SQL program that obtains the first 20 rows of the employees table as an XML
document. Refer to "Specifying Element Names with DBMS_XMLQuery" on page 9-30.

createObjRelSchema.sgl

A SQL script that sets up an object-relational schema and populates it. Refer to "XML
Mapping Against an Object-Relational Schema" on page 9-38.

createObjRelSchema2.sqgl

A SQL script that sets up an object-relational schema and populates it. Refer to "Altering
the Database Schema or SQL Query" on page 9-40.

createRelSchema. sqgl

A SQL script that creates a relational table and then creates a customer view that contains a
customer object on top of it. Refer to "Altering the Database Schema or SQL Query" on
page 9-40.

customer.xml

An XML document that describes a customer. Refer to "Altering the Database Schema or
SQL Query" on page 9-40.

deleteEmployeeByKey.sqgl

A PL/SQL program that deletes an employee by primary key. Refer to "Deleting by Key
with DBMS_XMLSave: Example" on page 9-36.

deleteEmployeeByRow. sqgl

A PL/SQL program that deletes an employee by row. Refer to "Deleting by Row with
DBMS_XMLSave: Example" on page 9-35.

domTest.java

A program that generates a DOM tree and then traverses it in document order, printing the
nodes one by one. Refer to "Generating a DOM Tree with OracleXMLQuery" on page 9-18.

index. txt

A README that describes the programs in the demo directory.

insProc.sgl

A PL/SQL program an XML document into a table. Refer to "Inserting Values into All
Columns with DBMS_XMLSave" on page 9-32.

insertClob.sgl

A SQL script that creates a table called xmldocument and stores an XML document in the
table as a CLOB. Refer to "Inserting Values into All Columns with DBMS_XMLSave" on
page 9-32.

insertClob2.sqgl

A SQL script that inserts an XML document into the xm1document table. Refer to
"Inserting into a Subset of Columns with DBMS_XMLSave" on page 9-33.

insertClob3.sqgl

A SQL script that inserts an XML document into the xm1document table. Refer to
"Updating with Key Columns with DBMS_XMLSave" on page 9-34.

insertClob4.sqgl

A SQL script that inserts an XML document into the xm1document table. Refer to
"Specifying a List of Columns with DBMS_XMLSave: Example" on page 9-35.

insertEmployee.sqgl

A PL/SQL script that calls the insProc stored procedure and inserts an employee into the
employees table. Refer to "Inserting XML with DBMS_XMLSave" on page 9-31.

insertEmployee2.sqgl

A PL/SQL script that invokes the testInsert procedure to insert the XML data for an
employee into the hr . employees table. Refer to "Inserting into a Subset of Columns with
DBMS_XMLSave" on page 9-33.

Using the XML SQL Utility (XSU) 9-11

Using the XML SQL Utility: Overview

Table 9-1 (Cont.) XSU Sample Files

File

Description

mapColumnToAtt.sqgl

A SQL script that queries the employees table, rendering employee_id as an XML
attribute. Refer to "Altering the Database Schema or SQL Query" on page 9-40.

new_emp.xml

An XML document that describes a new employee. Refer to "Running the testInsert
Program" on page 9-23.

new_emp2 .xml

An XML document that describes a new employee. Refer to "Running the testInsertSubset
Program" on page 9-24.

noRowsTest . java

A program that throws an exception when there are no more rows. Refer to "Raising a No
Rows Exception” on page 9-29.

pageTest.java

A program that uses the JDBC ResultSet to generate XML one page at a time. Refer to
"Generating Scrollable Result Sets" on page 9-21.

paginateResults.java

A program that generates an XML page that paginates results. Refer to "Paginating Results
with OracleXMLQuery: Example" on page 9-20.

paginateResults.sqgl

A PL/SQL script that paginates results. It skips the first 3 rows of the employees table and
then prints the rest of the rows 10 at a time by setting skipRows to 3 for the first batch of
10 rows and then to 0 for the rest of the batches. Refer to "Paginating Results with
DBMS_XMLQuery" on page 9-31.

printClobOut.sqgl

A PL/SQL script that prints a CLOB to the output buffer. Refer to "Generating XML from
Simple Queries with DBMS_XMLQuery" on page 9-30.

raiseException.sgl

A PL/SQL script that invokes the DBMS_XMLQuery .getExceptionContent procedure.
Refer to "Handling Exceptions in the XSU PL/SQL API" on page 9-36.

refCurTest.java

A program that generates XML from the results of the SQL query defined in the
testRefCur function. Refer to "Generating XML from Cursor Objects" on page 9-22.

sampl.java

A program that queries the scott . emp table, then generates an XML document from the
query results.

sampl0.java

A program that inserts sampdoc . xml into the xmltest_tabl table.

samp?2 .java

A program that queries the scott . emp table, then generates an XML document from the
query results. This program demonstrates how you can customize the generated XML
document.

sampdoc.xml

A sample XML data document that samp10 . java inserts into the database.

samps.sqgl

A SQL script that creates the xmltest_tabl table used by sampl0.java.

simpleQuery.sqgl

A PL/SQL script that selects 20 rows from the hr . employees table and obtains an XML
document as a CLOB. Refer to "Generating XML from Simple Queries with
DBMS_XMLQuery" on page 9-30.

testDML.sqgl

A PL/SQL script that uses the same context and settings to perform DML depending on
user input. Refer to "Reusing the Context Handle with DBMS_XMLSave" on page 9-36.

testDeleteKey.java

A program that limits the number of elements used to identify a row, which improves
performance by caching the DELETE statement and batching transactions. Refer to
"Deleting by Key with OracleXMLSave" on page 9-28.

testDeleteKey.sqgl

A PL/SQL script that deletes a row from the employees table for every <ROW> element in
an input XML document. Refer to "Deleting by Key with DBMS_XMLSave: Example" on
page 9-36.

testDeleteRow. java

A program that accepts an XML document filename as input and deletes the rows
corresponding to the elements in the document. Refer to "Deleting by Row with
OracleXMLSave" on page 9-27.

testDeleteRow.sqgl

A SQL script that deletes a row from the employees table for every <ROW> element in an
input XML document. Refer to "Deleting by Row with DBMS_XMLSave: Example" on
page 9-35.

testException. java

A sample program shown that throws a runtime exception and then obtains the parent
exception by invoking Exception.getParentException (). Refer to "Obtaining the
Parent Exception" on page 9-29.

testInsert.java

A Java program that inserts XML values into all columns of the hr . employees table.
Refer to "Inserting XML into All Columns with OracleXMLSave" on page 9-22.

testInsert.sql

A PL/SQL script that inserts XML data into a subset of columns. Refer to "Inserting into a
Subset of Columns with DBMS_XMLSave" on page 9-33.

9-12 Oracle XML Developer's Kit Programmer's Guide

Using the XML SQL Utility: Overview

Table 9-1 (Cont.) XSU Sample Files

File

Description

testInsertSubset.java

A program shown that inserts XML data into a subset of columns. Refer to "Inserting XML
into a Subset of Columns with OracleXMLSave" on page 9-23.

testRef.sqgl

A PL/SQL script that creates a function that defines a REF cursor and returns it. Every time
the testRefCur function is called, it opens a cursor object for the SELECT query and
returns that cursor instance. Refer to "Generating XML from Cursor Objects" on page 9-22.

testUpdate. java

A sample program that updates the hr . employees table by invoking the
OracleXMLSave.setKeyColumnList () method. Refer to "Updating Rows with
OracleXMLSave" on page 9-24.

testUpdateKey.sqgl

A PL/SQL that creates a PL/SQL procedure called testUpdateKey that uses the
employee_id column of the employees table as a primary key. Refer to "Updating with
Key Columns with DBMS_XMLSave" on page 9-34.

testUpdateList.java

Suppose only want to update the salary and job title for each employee and ignore the
other information. If you know that all the elements to be updated are the same for all ROwW
elements in the XML document, then you can use the
OracleXMLSave.setUpdateColumnNames () method to specify the columns. Refer to
"Updating a Column List with OracleXMLSave" on page 9-25.

testUpdateSubset.sqgl

A SQL script that creates the procedure testUpdateSubset. The procedure specifies the
employee_id column as the key and specifies that salary and job_1id should be
updated. Refer to "Specifying a List of Columns with DBMS_XMLSave: Example" on
page 9-35.

testXMLSQL. java

A sample program that uses XSU to generate XML as a String object. This program
queries the hr . employees table and prints the result set to standard output. Refer to
"Generating a String with OracleXMLQuery" on page 9-17.

upd_emp .xml

An XML document that contains updated salary and other information for a series of
employees. Refer to "Running the testUpdate Program" on page 9-25.

upd_emp?2 .xml

An XML document that contains updated salary and other information for a series of
employees. Refer to "Running the testUpdate Program" on page 9-25.

updateEmployee.sqgl

An XML document that contains new data for two employees. Refer to "Running the
testUpdateList Program" on page 9-26.

updateEmployee2.sqgl

A PL/SQL script that passes an XML document to the testUpdateSubset procedure and
generates two UPDATE statements. Refer to "Specifying a List of Columns with
DBMS_XMLSave: Example" on page 9-35.

The basic steps for running the demos is as follows:

1. Change into the SORACLE_HOME/xdk/demo/java/xsu directory (UNIX) or
$ORACLE_HOMES% \xdk\demo\ java\xsu directory (Windows).

2. Make sure that your environment variables are set as described in "Setting Up the
Java XDK Environment" on page 2-5. In particular, make sure that the Java
classpath includes xsul2. jar for XSU and classesl2. jar (Java 1.2 and 1.3) or
ojdbcl4d. jar (Java 1.4) for JDBC. If you use a multibyte character set other than
UTF-8, ISO8859-1, or JA16S]IS, then place orail8n. jar in your classpath so that
JDBC can convert the character set of the input file to the database character set.

3. Compile the Java programs as shown in the following example:

javac sampl.java samp2.java samplO.java

4. Connect to an Oracle database as hr /hr and run the SQL scripts as shown in the
following example:

CONNECT hr/hr
@SORACLE_HOME/xdk/demo/java/xsu/createRelSchema

The following sections describe the XSU demos in detail.

Using the XML SQL Utility (XSU) 9-13

Using the XML SQL Utility: Overview

Using the XSU Command-Line Utility

The XDK includes a command-line Java interface for XSU. XSU command-line options
are provided through the Java class OracleXML. To use this API ensure that your Java
classpath is set as described in "Setting Up the Java XDK Environment" on page 2-5.

To print usage information for XSU to standard output, run the following command:

java OracleXML

To use XSU, invoke it with either the get XML or putXML parameter as follows:

java OracleXML getXML options
java OracleXML putXML options

Table 9-2 describes the get XML options.

Table 9-2 getXML Options

getXML Option

Description

-user "username/password"

-conn "JDBC_connect_string"

-withDTD

-withSchema

-rowsetTag tag_name

-rowTag tag_name

-rowIdAttr
row_1id_attribute_name

-rowIdColumn row_Id column_name

-collectionIdAttr
collect_id_attr_name

-useTypeForCollElemTag

-useNullAttrId

-styleSheet stylesheet_URI
-stylesheetType stylesheet_type
-setXSLT URI

-setXSLTRef URT

Specifies the username and password to connect to the database. If this
is not specified, then the user defaults to scott/tiger. Note that the
connect string is also specified. You can specify the username and
password as part of the connect string.

Specifies the JDBC database connect string. By default the connect
string is: "jdbc:oracle:oci:@"
Instructs the XSU to generate the DTD along with the XML document.

Instructs the XSU to generate the schema along with the XML
document.

Specifies the rowset tag, which is tag that encloses all the XML
elements corresponding to the records returned by the query. The
default rowset tag is <ROWSET>. If you specify an empty string (") for
rowset, then XSU omits the rowset element.

Specifies the row tag that encloses the data corresponding to a
database row. The default row tag is <ROW>. If you specify an empty
string (") for the row tag, then XSU omits the row tag.

Names the attribute of the ROW element that keeps track of the
cardinality of the rows. By default this attribute is num. If you specify
an empty string as the rowID attribute, then XSU omits the attribute.

Specifies that the value of one of the scalar columns from the query is
to be used as the value of the rowID attribute.

Names the attribute of an XML list element that keeps track of the
cardinality of the elements of the list. The generated XML lists
correspond to either a cursor query, or collection. If you specify an
empty string ("") as the rowID attribute, then XSU omits the attribute.

Specifies the use type name for the column-element tag. By default
XSU uses the column-name_ item.

Specifies the attribute NULL (TRUE/FALSE) to indicate the nullness
of an element.

Specifies the stylesheet in the XML processing instruction.
Specifies the stylesheet type in the XML processing instruction.
Specifies the XSLT stylesheet to apply to the XML document.

Sets the XSLT external entity reference.

9-14 Oracle XML Developer's Kit Programmer's Guide

Using the XML SQL Utility: Overview

Table 9-2 (Cont.) getXML Options

getXML Option

Description

-useLowerCase | -useUpperCase

-withEscaping

-errorTag error tag name

-raiseException

-raiseNoRowsException
-useStrictLegalXMLCharCheck

-maxRows maximum_ ¥rows

-skipRows
number_of_rows_to_skip

-encoding encoding name
-dateFormat date_format

-fileName SQL_query. fileName |
SQL_query

Generates lowercase or uppercase tag names. The default is to match
the case of the SQL object names from which the tags are generated.

Specifies the treatment of characters that are legal in SQL object names
but illegal in XML tags. If such a character is encountered, then it is
escaped so that it does not throw an exception.

Specifies the tag to enclose error messages that are formatted as XML.

Specifies that XSU should throw a Java exception. By default XSU
catches any error and produces the XML error.

Raises an exception if no rows are returned.
Performs strict checking on input data.

Specifies the maximum number of rows to be retrieved and converted
to XML.

Specifies the number of rows to be skipped.

Specifies the character set encoding of the generated XML.
Specifies the date format for the date values in the XML document.

Specifies the file name that contains the query or the query itself.

Table 9-3 describes the putXML options.

Table 9-3 putXML Options

putXML Options

Description

-user " username/password "

-conn "JDBC_connect_string"”

-batchSize batching _size

-commitBatch commit_size

-rowTag tag_name

-dateFormat date_format

-withEscaping

-ignoreCase

-preserveWhitespace

-setXSLT URI

Specifies the username and password to connect to the database. If not
specified, the user defaults to scott/tiger. The connect string is
also specified; you can specify the username and password as part of
the connect string.

Specifies the JDBC database connect string. By default the connect
string is: "jdbc:oracle:oci:@".

Specifies the batch size that controls the number of rows that are
batched together and inserted in a single trip to the database to
improve performance.

Specifies the number of inserted records after which a commit is to be
executed. If the autocommit is TRUE (the default), then setting
commitBatch has no consequence.

Specifies the row tag, which is tag used to enclose the data
corresponding to a database row. The default row tag is <ROW>. If you
specify an empty string for the row tag, then XSU omits the row tag.

Specifies the date format for the date values in the XML document.

Turns on reverse mapping if SQL to XML name escaping was used
when generating the doc.

Makes the matching of the column names with tag names case
insensitive. For example, EmpNo matches with EMPNO if ignoreCase
is on.

Preserves the whitespace in the inserted XML document.

Specifies the XSLT to apply to the XML document before inserting.

Using the XML SQL Utility (XSU) 9-15

Using the XML SQL Utility: Overview

Table 9-3 (Cont.) putXML Options

putXML Options Description

-setXSLTRef URT Sets the XSLT external entity reference

-fileName file_name | -URL URL | Specifies the XML document to insert: a local file, a URL, or an XML
-xmlDoc xml_document document as a string on the command line.

table_name Specifies the name of the table to put the values into.

Generating XML with the XSU Command-Line Utility

To generate XML from the database schema use the getXML parameter. For example,
to generate an XML document by querying the employees table in the hr schema,
you can use the following syntax:

java OracleXML getXML -user "hr/hr" "SELECT * FROM e